I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string pict...
I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string picture of quantum gravity. I should mention that I will not have time do discuss either classical mechanics or symplectic structures. This is especially unfortunate, because one of the roots of differential geometry is planted firmly in mechanics, Cf. [GS]. The French geometer Elie Cartan first formulated his invariant approach to geometry in a series of papers on affine connections and general relativity, Cf. [C]. Cartan was trying to recast the Newtonian theory of gravity in the same framework as Einstein's theory. From the historical perspective it is significant that Cartan found relativity a convenient framework for his ideas. As about the same time Hermann Weyl in troduced the idea of gauge theory into geometry for purposes much different than those for which it would ultimately prove successful, Cf. [W]. Weyl wanted to unify gravity with electromagnetism and though that a conformal structure would fulfill thel task but Einstein rebutted this approach.