RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Numerical Evaluation of Stress Intensity Factors in Functionally Graded CNTRC Plates

      한글로보기

      https://www.riss.kr/link?id=A109540949

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The numerical evaluation of stress intensity factors (SIFs) is presented for functionally graded CNT-reinforced composite (FG-CNTRC) plate. The 3-D linear elasticity of cracked orthotropic plate is formulated in terms of 2-D FEM and the (1,1,0) hierarchic model which is sort of the first-order shear deformation theory. Meanwhile, a 2-D thickness-wise plane within FG-CNTRC plate is taken for the numerical evaluation of SIFs. The thickness-wise mixed-mode SIFs are evaluated from the interaction integral by introducing the 2-D complex-valued orthotropic crack-tip singular fields. The numerical evaluation method is validated by comparing with the other reference methods, with the maximum relative difference equal to 31.43%. Moreover, the SIF characteristics of FG-CNTRC are numerically investigated. It is revealed that the thickness-wise volume fraction distribution of CNTs significantly influences the magnitude and variation of SIFs. However, the volume fraction magnitude of CNTs does not show an apparent consistent effect on the both items of SIFs.
      번역하기

      The numerical evaluation of stress intensity factors (SIFs) is presented for functionally graded CNT-reinforced composite (FG-CNTRC) plate. The 3-D linear elasticity of cracked orthotropic plate is formulated in terms of 2-D FEM and the (1,1,0) hierar...

      The numerical evaluation of stress intensity factors (SIFs) is presented for functionally graded CNT-reinforced composite (FG-CNTRC) plate. The 3-D linear elasticity of cracked orthotropic plate is formulated in terms of 2-D FEM and the (1,1,0) hierarchic model which is sort of the first-order shear deformation theory. Meanwhile, a 2-D thickness-wise plane within FG-CNTRC plate is taken for the numerical evaluation of SIFs. The thickness-wise mixed-mode SIFs are evaluated from the interaction integral by introducing the 2-D complex-valued orthotropic crack-tip singular fields. The numerical evaluation method is validated by comparing with the other reference methods, with the maximum relative difference equal to 31.43%. Moreover, the SIF characteristics of FG-CNTRC are numerically investigated. It is revealed that the thickness-wise volume fraction distribution of CNTs significantly influences the magnitude and variation of SIFs. However, the volume fraction magnitude of CNTs does not show an apparent consistent effect on the both items of SIFs.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼