RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      금속기지복합재 에너지 직접 용착(DED) 방식 적층제조에서의 용융풀 내 강화 입자 분산 예측 = Predicting Reinforcing Particle Distribution in Melt Pool during Direct Energy Deposition (DED) MMC Additive Manufacturing Process

      한글로보기

      https://www.riss.kr/link?id=A109721894

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a method for predicting the dispersion of reinforcement nanoparticles (TiC) within the molten pool during the DED (Direct Energy Deposition) additive manufacturing process for a metal matrix composite (Ti-6Al-4V). The formation behavior of the molten pool was computationally simulated using a Finite Volume Method (FVM)-based model that incorporates the Marangoni effect and complex physical phenomena. The cross-sectional analysis of the molten pool demonstrated that the prediction error was, on average, within 10% compared to the experimental values. Based on these predicted values, the behavior of the nanoparticles within the molten pool was simulated using the Discrete Phase Model (DPM), ultimately enabling the prediction of their dispersion within the molten pool.
      번역하기

      This paper proposes a method for predicting the dispersion of reinforcement nanoparticles (TiC) within the molten pool during the DED (Direct Energy Deposition) additive manufacturing process for a metal matrix composite (Ti-6Al-4V). The formation beh...

      This paper proposes a method for predicting the dispersion of reinforcement nanoparticles (TiC) within the molten pool during the DED (Direct Energy Deposition) additive manufacturing process for a metal matrix composite (Ti-6Al-4V). The formation behavior of the molten pool was computationally simulated using a Finite Volume Method (FVM)-based model that incorporates the Marangoni effect and complex physical phenomena. The cross-sectional analysis of the molten pool demonstrated that the prediction error was, on average, within 10% compared to the experimental values. Based on these predicted values, the behavior of the nanoparticles within the molten pool was simulated using the Discrete Phase Model (DPM), ultimately enabling the prediction of their dispersion within the molten pool.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼