The intelligent recognition of ship geometric features is a prerequisite for enabling computers to automatically generate and deform ship hull surfaces according to requirements, thereby replacing the work of human designers to improve design efficien...
The intelligent recognition of ship geometric features is a prerequisite for enabling computers to automatically generate and deform ship hull surfaces according to requirements, thereby replacing the work of human designers to improve design efficiency. This paper aims to research the recognition of geometric features in threedimensional ship data using PointNet. To achieve this goal, we first construct two ship point cloud datasets suitable for global feature classification and feature part segmentation of three-dimensional hulls. Subsequently, we conducted recognition capability testing to determine the optimal hyperparameters for identifying ship feature networks. Finally, we employ ship models with non-standard positions to implement data augmentation, enhancing the network’s robustness in recognizing the initial positions of ships and achieving rapid cognition of three-dimensional ship geometric features. The findings of this research will provide technical support for ship design based on artificial intelligence technology.