Osteosarcoma is the most common primary malignancy of bone, and patients often develop pulmonary metastasis. The mechanisms underlying osteosarcoma metastasis remain to be elucidated. Recently, anti-inflammatory agents were shown to be useful in the t...
Osteosarcoma is the most common primary malignancy of bone, and patients often develop pulmonary metastasis. The mechanisms underlying osteosarcoma metastasis remain to be elucidated. Recently, anti-inflammatory agents were shown to be useful in the treatment of tumor progression. We previously isolated a natural anti-inflammatory peptide from the seahorse Hippocampus kuda bleeler. Here, we examined the antitumor metastatic activity of this peptide and investigated its mechanism. The peptide significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasive migration of human osteosarcoma MG-63 cells. Its inhibitory effect on invasive migration was associated with reduced expression of matrix metalloproteinases (MMP1 and MMP2). In addition, TPA stimulation increased intracellular reactive oxygen species (ROS) generation and small GTPase Rac1 expression, whereas the peptide decreased ROS generation and Rac1 activation. Taken together, these results suggest that the peptide inhibits invasive migration of MG-63 osteosarcoma cells by inhibiting MMP1 and MMP2 expression through downregulation of Rac1-ROS signaling.