The R-curve for in situ-toughened SiC-30 wt% TiC composites was estimated by the indentation-strength method and compared to that of monolithic SiC with toughened microstructure. Both materials exhibited rising R-curve behavior. The SiC-TiC composites...
The R-curve for in situ-toughened SiC-30 wt% TiC composites was estimated by the indentation-strength method and compared to that of monolithic SiC with toughened microstructure. Both materials exhibited rising R-curve behavior. The SiC-TiC composites, however, displayed better damage tolerance and higher resistance to crack growth. Total volume fractions of SiC key grains, which take part in toughening mechanisms such as crack bridging and crack deflection, were 0.607 for monolithic SiC ceramics and 0.614 for SiC-TiC composites. From the microstructural characterization and the residual stress calculation, it was inferred that this superior performance of SiC-TiC composites can be attributed to stress-induced microcracking at heterophase (SiC/TiC) boundaries and some contribution from carck deflection by TiC grains.