RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Recent trends in studies of biomolecular phase separation

      한글로보기

      https://www.riss.kr/link?id=A108248603

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Biomolecular phase separation has recently attracted broad interest,due to its role in the spatiotemporal compartmentalizationof living cells. It governs the formation, regulation, anddissociation of biomolecular condensates, which play multipleroles in vivo, from activating specific biochemical reactions toorganizing chromatin. Interestingly, biomolecular phase separationseems to be a mainly passive process, which can be explainedby relatively simple physical principles and reproducedin vitro with a minimal set of components. This Mini reviewfocuses on our current understanding of the fundamental principlesof biomolecular phase separation and the recent progressin the research on this topic.
      번역하기

      Biomolecular phase separation has recently attracted broad interest,due to its role in the spatiotemporal compartmentalizationof living cells. It governs the formation, regulation, anddissociation of biomolecular condensates, which play multipleroles ...

      Biomolecular phase separation has recently attracted broad interest,due to its role in the spatiotemporal compartmentalizationof living cells. It governs the formation, regulation, anddissociation of biomolecular condensates, which play multipleroles in vivo, from activating specific biochemical reactions toorganizing chromatin. Interestingly, biomolecular phase separationseems to be a mainly passive process, which can be explainedby relatively simple physical principles and reproducedin vitro with a minimal set of components. This Mini reviewfocuses on our current understanding of the fundamental principlesof biomolecular phase separation and the recent progressin the research on this topic.

      더보기

      참고문헌 (Reference)

      1 Jia P, "ZMYND8 mediated liquid condensates spatiotemporally decommission the latent superenhancers during macrophage polarization" 12 : 6535-, 2021

      2 Fong K, "Whole-genome screening identifies proteins localized to distinct nuclear bodies" 203 : 149-164, 2013

      3 Dolgin E, "What lava lamps and vinaigrette can teach us about cell biology" 555 : 300-303, 2018

      4 Martin EW, "Valence and patterning of aromatic residues determine the phase behavior of prion-like domains" 367 : 694-699, 2020

      5 Paloni M, "Unraveling molecular interactions in liquid–liquid phase separation of disordered proteins by atomistic simulations" 124 : 9009-9016, 2020

      6 Rubinstein M, "Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics" 31 : 1386-1397, 1998

      7 Flory PJ, "Thermodynamics of high polymer solutions" 10 : 51-61, 1942

      8 Huggins ML, "Theory of solutions of high polymers1" 64 : 1712-1719, 1942

      9 Lee T, "The flexibility-based modulation of DNA nanostar phase separation" 13 : 17638-17647, 2021

      10 Azaldegui CA, "The emergence of phase separation as an organizing principle in bacteria" 120 : 1123-1138, 2021

      1 Jia P, "ZMYND8 mediated liquid condensates spatiotemporally decommission the latent superenhancers during macrophage polarization" 12 : 6535-, 2021

      2 Fong K, "Whole-genome screening identifies proteins localized to distinct nuclear bodies" 203 : 149-164, 2013

      3 Dolgin E, "What lava lamps and vinaigrette can teach us about cell biology" 555 : 300-303, 2018

      4 Martin EW, "Valence and patterning of aromatic residues determine the phase behavior of prion-like domains" 367 : 694-699, 2020

      5 Paloni M, "Unraveling molecular interactions in liquid–liquid phase separation of disordered proteins by atomistic simulations" 124 : 9009-9016, 2020

      6 Rubinstein M, "Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics" 31 : 1386-1397, 1998

      7 Flory PJ, "Thermodynamics of high polymer solutions" 10 : 51-61, 1942

      8 Huggins ML, "Theory of solutions of high polymers1" 64 : 1712-1719, 1942

      9 Lee T, "The flexibility-based modulation of DNA nanostar phase separation" 13 : 17638-17647, 2021

      10 Azaldegui CA, "The emergence of phase separation as an organizing principle in bacteria" 120 : 1123-1138, 2021

      11 Boyko S, "Tau liquid–liquid phase separation in neurodegenerative diseases" 32 : 611-623, 2022

      12 Hallegger M, "TDP-43condensation properties specify its RNA-binding and regulatory repertoire" 184 : 4680-4696, 2021

      13 Riback JA, "Stress-triggered phase separation is an adaptive, evolutionarily tuned response" 168 : 1028-1040, 2017

      14 Grese ZR, "Specific RNA interactions promote TDP-43 multivalent phase separation and maintain liquid properties" 22 : e53632-, 2021

      15 Folkmann AW, "Regulation of biomolecular condensates by interfacial protein clusters" 373 : 1218-1224, 2021

      16 Pérez-Schindler J, "RNA-bound PGC-1α controls gene expression in liquidlike nuclear condensates" 118 : e2105951118-, 2021

      17 Rhine K, "RNA droplets" 49 : 247-265, 2020

      18 Roden C, "RNA contributions to the form and function of biomolecular condensates" 22 : 183-195, 2021

      19 Brangwynne Clifford P, "Polymer physics of intracellular phase transitions" 11 : 899-904, 2015

      20 Choi J-M, "Physical principles underlying the complex biology of intracellular phase transitions" 49 : 107-133, 2020

      21 Banjade S, "Phase transitions of multivalent proteins can promote clustering of membrane receptors" 3 : e04123-, 2014

      22 Li P, "Phase transitions in the assembly of multivalent signalling proteins" 483 : 336-340, 2012

      23 Sheu-Gruttadauria J, "Phase transitions in the assembly and function of human miRISC" 173 : 946-957, 2018

      24 Fujioka Y, "Phase separation organizes the site of autophagosome formation" 578 : 301-305, 2020

      25 Shao W, "Phase separation of RNA-binding protein promotes polymerase binding and transcription" 18 : 70-80, 2022

      26 Xiao Q, "Phase separation in immune signalling" 22 : 188-199, 2022

      27 Long Q, "Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation" 28 : 900-908, 2021

      28 Shen C, "Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome" 184 : 5759-5774, 2021

      29 Molliex A, "Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization" 163 : 123-133, 2015

      30 Zbinden A, "Phase separation and neurodegenerative diseases : a disturbance in the force" 55 : 45-68, 2020

      31 Wei MT, "Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles" 9 : 1118-1125, 2017

      32 Sun M, "NuMA regulates mitotic spindle assembly, structural dynamics and function via phase separation" 12 : 7157-, 2021

      33 Sawner AS, "Modulating α-synuclein liquid–liquid phase separation" 60 : 3676-3696, 2021

      34 Palacio M, "Merging established mechanisms with new insights : condensates, hubs, and the regulation of rna polymerase II transcription" 434 : 167216-, 2022

      35 Cho WK, "Mediator and RNA polymerase II clusters associate in transcriptiondependent condensates" 361 : 412-415, 2018

      36 Fritsch AW, "Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates" 118 : e2102772118-, 2021

      37 Wang B, "Liquid–liquid phase separation in human health and diseases" 6 : 290-, 2021

      38 Alberti S, "Liquid–liquid phase separation in disease" 53 : 171-194, 2019

      39 Hyman AA, "Liquidliquid phase separation in biology" 30 : 39-58, 2014

      40 Wang B, "Liquid-liquid phase separation in human health and diseases" 6 : 290-290, 2021

      41 Zhang H, "Liquid-liquid phase separation in biology : mechanisms, physiological functions and human diseases" 63 : 953-985, 2020

      42 Shin Y, "Liquid phase condensation in cell physiology and disease" 357 : eaaf4382-, 2017

      43 RuffKM, "Ligand effects on phase separation of multivalent macromolecules" 118 : 10-, 2021

      44 Nicolas E, "Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress" 7 : 11390-, 2016

      45 Malki A, "Intrinsically disordered tardigrade proteins self-assemble into fibrous gels in response to environmental stress" 61 : e202109961-, 2022

      46 Harmon TS, "Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins" 6 : e30294-, 2017

      47 Liu Q, "Glycogen accumulation and phase separation drives liver tumor initiation" 184 : 5559-5576, 2021

      48 Choi J-M, "Generalized models for bond percolation transitions of associative polymers" 102 : 042403-, 2020

      49 Kroschwald S, "Gel or Die : phase separation as a survival strategy" 168 : 947-948, 2017

      50 Shi Y, "Formation of nuclear condensates by the mediator complex subunit Med15 in mammalian cells" 19 : 245-, 2021

      51 Buchan JR, "Eukaryotic stress granules : the ins and outs of translation" 36 : 932-941, 2009

      52 Le Vay K, "Enhanced ribozyme-catalyzed recombination and oligonucleotide assembly in peptide-RNA condensates" 60 : 26096-26104, 2021

      53 Bergeron-Sandoval LP, "Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling" 118 : e2113789118-, 2021

      54 Wippich F, "Dual specificity kinase dyrk3 couples stress granule condensation/ dissolution to mTORC1 signaling" 152 : 791-805, 2013

      55 Kim GH, "Distinct roles of hnRNPH1low-complexity domains in splicing and transcription" 118 : e2109668118-, 2021

      56 Bremer A, "Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains" 14 : 196-207, 2022

      57 Ryu JK, "Current understanding of molecular phase separation in chromosomes" 22 : 10736-, 2021

      58 Banani SF, "Compositional control of phase-separated cellular bodies" 166 : 651-663, 2016

      59 Zhu P, "Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression" 599 : 657-661, 2021

      60 Feric M, "Coexisting liquid phases underlie nucleolar subcompartments" 165 : 1686-1697, 2016

      61 Song D, "Client proximity enhancement inside cellular membrane-less compartments governed by client-compartment interactions" 11 : 1-13, 2020

      62 Qi Y, "Chromatin network retards nucleoli coalescence" 12 : 6824-, 2021

      63 Wurtz JD, "Chemical-reaction-controlled phase separated drops : formation, size selection, and coarsening" 120 : 078102-, 2018

      64 Sato Y, "Capsule-like DNA hydrogels with patterns formed by lateral phase separation of DNA nanostructures" 2 : 159-168, 2022

      65 Babl L, "CTP-controlled liquid–liquid phase separation of ParB" 434 : 167401-, 2022

      66 Lee R, "CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates" 50 : 207-226, 2022

      67 Banani SF, "Biomolecular condensates : organizers of cellular biochemistry" 18 : 285-298, 2017

      68 Hong K, "Behavior control of membrane-less protein liquid condensates with metal ioninduced phase separation" 11 : 5554-, 2020

      69 Agarwal A, "An intrinsically disordered pathological prion variant Y145Stop converts into self-seeding amyloids via liquidliquid phase separation" 118 : e2100968118-, 2021

      70 Lednev IK, "Amyloid fibrils : the eighth wonder of the world in protein folding and aggregation" 106 : 1433-1435, 2014

      71 Scott WA, "Active controlled and tunable coacervation using side-chain functional α-helical homopolypeptides" 143 : 18196-18203, 2021

      72 Ishiguro A, "ALS-linked FUS mutations dysregulate G-quadruplexdependent liquid–liquid phase separation and liquid-tosolid transition" 297 : 101284-, 2021

      73 Abbas M, "A short peptide synthon for liquid–liquid phase separation" 13 : 1046-1054, 2021

      74 Hnisz D, "A phase separation model for transcriptional control" 169 : 13-23, 2017

      75 Wang J, "A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins" 174 : 688-699, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : BMB reports
      외국어명 : BMB reports
      2024 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-01-01 평가 등재학술지 선정 (해외등재 학술지 평가) KCI등재
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2013-07-17 학술지명변경 한글명 : BMB reports -> BMB Reports
      외국어명 : BMB reports -> BMB Reports
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-09-21 학회명변경 한글명 : 대한생화학ㆍ분자생물학회 -> 생화학분자생물학회
      영문명 : Korean Society Of Medical Biochemistry And Molecular Biology -> Korean Society Of Biochemistry And Molecular Biology
      KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 2.76 0.5 1.94
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.45 1.12 0.646 0.12
      더보기

      연관 공개강의(KOCW)

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼