RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      GIS와 확률론적 해석을 적용한 산사태 취약성 평가 : 보은지역 사례를 중심으로 = Susceptibility assessment of landslide using GIS and probabilistic analysis : case study for Boeun area

      한글로보기

      https://www.riss.kr/link?id=T12698163

      • 저자
      • 발행사항

        화성 : 수원대학교, 2012

      • 학위논문사항

        학위논문(박사) -- 수원대학교 대학원 , 토목공학과 , 2012

      • 발행연도

        2012

      • 작성언어

        한국어

      • KDC

        532.3 판사항(5)

      • DDC

        624.15136 판사항(21)

      • 발행국(도시)

        경기도

      • 형태사항

        vii, 122장 : 삽화, 도표 ; 26 cm

      • 일반주기명

        GIS는 "Geographic Information System"의 약어임
        참고문헌: 장 114-120

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 수원대학교 도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Since the occurrence of landslide is affected by many different spatial and climatic factors such as geology, geomorphology, vegetation and rainfall, it is difficult to predict and assess its hazard. Therefore, several researches have been carried out, especially based on Geographic Information System(GIS). However, the GIS techniques used in many previous studies consider only the statistics of occurrence and the related factors, not the mechanical analysis of the failure mechanism.
      The objective of this study is to suggest an assessment method for landslide susceptibility in regional area using GIS and Monte Carlo Simulation(MCS) which is commonly used as a probabilistic analysis. Boeun in Chungcheongbuk-do was selected as the study area. And its spatial data were obtained to construct the spatial database for input data. The geotechnical parameters for susceptibility assessment of landslide were obtained from field and analyzed to minimize the intrinsic uncertainties. The cohesion and internal friction angle were considered as random variables and their probability characteristics were obtained from field samples. Then using MCS, the probability of failure for each grid was evaluated instead of safety factor.
      From the results of the susceptibility assessment of landslide, when the criteria is set as 5% for the probability of failure in landslide, the analysis provides an appropriate result comparing to field conditions. However, as the criteria is increased, the accuracy of results is decreased. In addition, as the coefficients of variation for random variables are increased, the degree of prediction accuracy is also increased. That is, 30% of the coefficient of variation is appropriate to improve the reliability and reduce the uncertainties if field data are not available.
      The assessment results for susceptibility of landslide were applied to Boeun area and checked its feasibility. Since MCS technique effectively deals with uncertainties and random properties of input parameters, the probabilistic analysis shows more accurate results than conventional deterministic analysis methods. Moreover, It can be effectively utilized any region where the GIS data were established using MCS module presented here.
      번역하기

      Since the occurrence of landslide is affected by many different spatial and climatic factors such as geology, geomorphology, vegetation and rainfall, it is difficult to predict and assess its hazard. Therefore, several researches have been carried out...

      Since the occurrence of landslide is affected by many different spatial and climatic factors such as geology, geomorphology, vegetation and rainfall, it is difficult to predict and assess its hazard. Therefore, several researches have been carried out, especially based on Geographic Information System(GIS). However, the GIS techniques used in many previous studies consider only the statistics of occurrence and the related factors, not the mechanical analysis of the failure mechanism.
      The objective of this study is to suggest an assessment method for landslide susceptibility in regional area using GIS and Monte Carlo Simulation(MCS) which is commonly used as a probabilistic analysis. Boeun in Chungcheongbuk-do was selected as the study area. And its spatial data were obtained to construct the spatial database for input data. The geotechnical parameters for susceptibility assessment of landslide were obtained from field and analyzed to minimize the intrinsic uncertainties. The cohesion and internal friction angle were considered as random variables and their probability characteristics were obtained from field samples. Then using MCS, the probability of failure for each grid was evaluated instead of safety factor.
      From the results of the susceptibility assessment of landslide, when the criteria is set as 5% for the probability of failure in landslide, the analysis provides an appropriate result comparing to field conditions. However, as the criteria is increased, the accuracy of results is decreased. In addition, as the coefficients of variation for random variables are increased, the degree of prediction accuracy is also increased. That is, 30% of the coefficient of variation is appropriate to improve the reliability and reduce the uncertainties if field data are not available.
      The assessment results for susceptibility of landslide were applied to Boeun area and checked its feasibility. Since MCS technique effectively deals with uncertainties and random properties of input parameters, the probabilistic analysis shows more accurate results than conventional deterministic analysis methods. Moreover, It can be effectively utilized any region where the GIS data were established using MCS module presented here.

      더보기

      목차 (Table of Contents)

      • 제 1 장 서 론 1
      • 1.1 연구배경 및 목적 1
      • 1.2 연구동향 5
      • 1.3 연구내용 및 방법 8
      • 1.4 연구범위 10
      • 제 1 장 서 론 1
      • 1.1 연구배경 및 목적 1
      • 1.2 연구동향 5
      • 1.3 연구내용 및 방법 8
      • 1.4 연구범위 10
      • 제 2 장 이론적 배경 11
      • 2.1 산사태 기본이론 11
      • 2.1.1 산사태의 정의 및 원인 11
      • 2.1.2 산사태 분류 13
      • 2.1.3 토석류 19
      • 2.1.4 국내 산사태의 유형 20
      • 2.2 지리정보시스템 21
      • 2.2.1 개요 21
      • 2.2.2 GIS의 기능 22
      • 2.2.3 GIS의 구성요소 24
      • 2.2.4 GIS의 활용분야 25
      • 2.3 확률론의 기본개념 28
      • 2.3.1 확률변수 29
      • 2.3.2 확률밀도함수 30
      • 2.3.3 평균 및 표준편차 32
      • 2.3.4 정규성 검정 33
      • 2.4 산사태 해석모델 36
      • 2.4.1 개요 36
      • 2.4.2 무한사면 해석모델 37
      • 2.4.3 안전율 및 파괴확률 38
      • 2.5 GIS를 활용한 산사태 취약성 분석 41
      • 2.5.1 결정론적 방법 41
      • 2.5.2 확률론적 방법 42
      • 2.5.3 SINMAP 방법 46
      • 제 3 장 연구대상 현장조사 및 확률특성 분석 47
      • 3.1 연구지역 47
      • 3.1.1 지형 및 지질 47
      • 3.1.2 산사태 피해현황 48
      • 3.2 현장조사 및 시료채취 50
      • 3.2.1 현장조사 50
      • 3.2.2 시료채취 52
      • 3.3 실내시험 결과 53
      • 3.4 지반정수의 확률적 특성 분석 56
      • 3.4.1 확률적 특성 획득 56
      • 3.4.2 정규성 검정결과 59
      • 제 4 장 GIS 자료구축 및 확률론적 해석기법 적용 61
      • 4.1 공간 데이터베이스 구축 61
      • 4.1.1 산사태 발생위치 데이터베이스 61
      • 4.1.2 지형 관련 데이터베이스 62
      • 4.1.3 토양 관련 데이터베이스 63
      • 4.1.4 지반정수 관련 데이터베이스 64
      • 4.2 몬테카를로 시뮬레이션(MCS)모듈 개발 및 적용 66
      • 제 5 장 산사태 취약성 평가 69
      • 5.1 확률론적 해석 69
      • 5.1.1 지하수위 변화에 따른 파괴확률 분포 70
      • 5.1.2 파괴확률 기준에 따른 해석 89
      • 5.1.3 변동계수 기준에 따른 해석 93
      • 5.2 결정론적 해석 100
      • 5.3 SINMAP을 이용한 해석 104
      • 5.4 적용성 분석 108
      • 5.4.1 확률론적 해석결과의 적용성 108
      • 5.4.2 파괴확률 기준에 따른 적용성 109
      • 5.4.3 변동계수 기준에 따른 적용성 110
      • 제 6 장 결 론 112
      • 참고문헌 114
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼