RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS

      Fracture of nanoscale Cu/Ag bimaterials with an interface crack

      한글로보기

      https://www.riss.kr/link?id=A107655883

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The fracture of nanoscale metallic bimaterials with an interface crack is investigated using atomistic simulations under uniaxial tensile loading conditions. Two Cu/Ag bimaterials with different crystal orientations are considered to examine the direction-dependent interface fracture behaviors. The effects of crack tip states on the fracture toughness and fracture behavior are also studied. The overall features for the selected models of both bimaterials are brittle; however, the fracture patterns are slightly different. Three methods were adopted to calculate the fracture toughness including atomistic simulations, linear elastic fracture mechanics, and Griffith theory. The results from different methods show good consistency because the models of the two bimaterials exhibit a linear elastic response under the applied tensile loading conditions. The scatter of the fracture toughness for the same bimaterials obtained from atomistic simulations is attributed to the different initial states of the models induced by the discrete nature of the materials on the atomic scale.
      번역하기

      The fracture of nanoscale metallic bimaterials with an interface crack is investigated using atomistic simulations under uniaxial tensile loading conditions. Two Cu/Ag bimaterials with different crystal orientations are considered to examine the direc...

      The fracture of nanoscale metallic bimaterials with an interface crack is investigated using atomistic simulations under uniaxial tensile loading conditions. Two Cu/Ag bimaterials with different crystal orientations are considered to examine the direction-dependent interface fracture behaviors. The effects of crack tip states on the fracture toughness and fracture behavior are also studied. The overall features for the selected models of both bimaterials are brittle; however, the fracture patterns are slightly different. Three methods were adopted to calculate the fracture toughness including atomistic simulations, linear elastic fracture mechanics, and Griffith theory. The results from different methods show good consistency because the models of the two bimaterials exhibit a linear elastic response under the applied tensile loading conditions. The scatter of the fracture toughness for the same bimaterials obtained from atomistic simulations is attributed to the different initial states of the models induced by the discrete nature of the materials on the atomic scale.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼