RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Aquathermolysis 반응에 의한 감압잔사유의 개질 = Refining of Vacuum Residues by Aquathermolysis Reaction

      한글로보기

      https://www.riss.kr/link?id=A103333403

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구에서는 aquathermolysis 반응을 이용하여 감압잔사유(VR)의 개질 반응을 실시하였다. 감압잔사유는 30 bar, 300℃ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진류와 아스...

      본 연구에서는 aquathermolysis 반응을 이용하여 감압잔사유(VR)의 개질 반응을 실시하였다. 감압잔사유는 30 bar, 300℃ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진류와 아스팔텐류가 감소하고, 포화탄화수소류(saturates)나 방향족탄화수소류(aromatics)가 증가하는 경향을 보였다. 이러한 경향은 수증기(steam)량이 감압잔사유와 동일 중량부 이상으로 과량 사용 시 더 확연하였다. 300 ℃, 30 bar 이상에서 48 h 반응하는 경우 VR 조성물은 초기상태(S/A/R/A = 7.3%/43.7%/25.6%/23.5%)에서 최종상태(S/A/R/A = 6.8%/57%/12.2% /24.0%)로 레진류의 함량이 전체에서 13% 정도 감소하고 방향족화합물들은 13% 정도 증가하였다. 이때 점도는 880,000 cp에서 290,000 cp로 68% 정도 감소하였다. 수소를 제공하기 쉬운 데칼린(decalin)을 10% 첨가하는 경우 24 h에 점도가 68% 정도 감소하였고, VR 조성물은 초기상태(S/A/R/A = 7.3%/43.7%/25.6% /23.5%)에서 최종상태(S/A/R/A = 4.5%/63.5%/12.5%/20.0%)로 레진류 및 아스팔텐의 함량이 49%에서 17%가 감소하였고, 방향족 화합물의 함량이 63.5%로 극대화되었다. Aquathermolysis 반응으로 형성된 기체층을 포집하여 GC-MS spectroscopy로 분석한 결과 에틸벤젠, 옥탄, 디메틸벤젠 등 다양한 탄화수소 화합물들이 검출됨을 확인하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this study, the reforming reaction of vacuum residue (VR) was carried out using aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting ...

      In this study, the reforming reaction of vacuum residue (VR) was carried out using aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above 300 ℃ for 24 h. This tendency became more evident when the amount of steam used was excessive than the amount of VR. When the aquathermolysis reaction was performed at 300 ℃ and 30 bar for 48 h, the VR composition was changed from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to final state (S/A/R/A = 6.8%/57%/12.2%/24.0%), and the contents of the resins decreased by 13% and the aromatic compounds increased by 13%. The viscosity decreased from 880,000 cp to 290,000 cp by 68%. When 10% of decalin, which is easy to provide hydrogen, was added, the viscosity decreased by 68% in 24 h. The VR composition showed a reduction in the contents of resins and asphaltenes from 49% to 17% from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to the final state (S/A/R/A = 4.5%/63.5%/12.5%/20.0%), and the content of aromatics was maximized to 63.5%. The gas layer formed by the aquathermolysis reaction in the reactor chamber was collected and analyzed by GC-MS spectroscopy. As a result, various hydrocarbon compounds such as ethylbenzene, octane and dimethylbenzene were detected.

      더보기

      참고문헌 (Reference)

      1 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003

      2 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions. Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003

      3 이후철, "Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization" 한국공업화학회 27 (27): 343-352, 2016

      4 J. Wang, "The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive" 66 : 69-74, 2009

      5 Y. Liu, "The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation" 16 : 842-846, 2002

      6 F. Zhao, "The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions" 6 (6): 2037-2041, 2014

      7 H. Wang, "Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil" 26 : 6518-6527, 2012

      8 A. Bera, "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review" 151 : 206-226, 2015

      9 F. R. Ahmadun, "Review of technologies for oil and gas produced water treatment" 170 : 530-551, 2009

      10 J. Peng, "Oil chemistry and its impact on heavy oil solution gas drive" 66 : 47-59, 2009

      1 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003

      2 C. Ovalles, "Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions. Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator" 48 : 59-60, 2003

      3 이후철, "Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization" 한국공업화학회 27 (27): 343-352, 2016

      4 J. Wang, "The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive" 66 : 69-74, 2009

      5 Y. Liu, "The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation" 16 : 842-846, 2002

      6 F. Zhao, "The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions" 6 (6): 2037-2041, 2014

      7 H. Wang, "Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil" 26 : 6518-6527, 2012

      8 A. Bera, "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review" 151 : 206-226, 2015

      9 F. R. Ahmadun, "Review of technologies for oil and gas produced water treatment" 170 : 530-551, 2009

      10 J. Peng, "Oil chemistry and its impact on heavy oil solution gas drive" 66 : 47-59, 2009

      11 C. Wu, "Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst" 38 : 684-690, 2010

      12 J. Li, "Influences on the aquathermolysis of heavy oil catalyzed by two different catalytic ions: Cu2+ and Fe3+" 27 : 2555-2562, 2013

      13 O. Muraza, "Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction" 114 : 1-10, 2015

      14 R. F. Meyer, "Heavy Oil and Natural Bitumen Resources in Geological Basins of the World" U.S. Department of Interior & U.S. Geological Survey 2007

      15 R. C. K. Wong, "Gas bubble growth in heavy oil-filled sand packs under undrained unloading" 55 : 259-270, 2007

      16 H. X. Xu, "Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic" 39 : 606-610, 2011

      17 P. Jing, "Effect of Ni2+ and Sn2+ modified SO42-/ZrO2 solid super-acid catalysts on visbreaking of heavy petroleum oil" 36 : 237-241, 2007

      18 C. Ovalles, "Downhole upgrading of extra-heavy crude oil using hydrogen donors and methane under steam injection conditions" 21 : 255-274, 2003

      19 S. K. Maity, "Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review" 24 : 2809-2816, 2010

      20 J. B. Hyne, "Aquathermolysis of heavy oils" McGraw Hill 404-411, 1984

      21 O. Muraza, "Aquathermolysis of heavy oil: A review and perspective on catalyst development" 157 : 219-231, 2015

      22 P. R. Kapadia, "A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen" 131 : 270-289, 2015

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-02-19 학술지명변경 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering KCI등재
      2009-04-28 학술지명변경 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.33 0.33 0.45 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼