RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      광 버스트 스위칭 망에서 인공면역체계 기반의 이상 상태 탐지 및 제어 = Artificial Immune System based Anomaly Detection and Control in OBS Network

      한글로보기

      https://www.riss.kr/link?id=T11616430

      • 저자
      • 발행사항

        전주 : 전북대학교 대학원, 2009

      • 학위논문사항

        학위논문(석사) -- 전북대학교 대학원 , 컴퓨터공학(컴퓨터공학) , 2009. 2

      • 발행연도

        2009

      • 작성언어

        한국어

      • 주제어
      • 발행국(도시)

        전북특별자치도

      • 기타서명

        Artificial Immune System based Anomaly Detection and Control in OBS Network

      • 형태사항

        vii, 53p : 삽도 ; 26cm

      • 일반주기명

        전북대학교 논문은 저작권에 의해 보호받습니다.
        지도교수:김영천
        참고문헌 : p.52-53

      • 소장기관
        • 전북대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, as Internet users and Internet-related services has increased explosively, high bandwidth has been desired. Thus, Optical burst switching (OBS) was proposed as a new switching paradigm for optical network.
      OBS network usually employs one-way reservation, which sends a burst control packet (BCP) with a specific offset time before transmitting each data burst frame (BDF). Due to such a property, multiple bursts contend with the same wavelength on the same output link simultaneously and lead to high burst losses. And the contention occurs more frequent as the offered load increases. So, for the better resource utilization of the network, it is required efficient control scheme to resolve contention.
      Therefore, segmentation based congestion control scheme was introduced in OBS network. This scheme is able to regulate the congestion according to segmentation sizes. However, because OBS network employs one-way reservation, segmentation occurs in spite of a low offered load. Therefore, if we only use the information of segmentation sizes, the network state may be detected as congestion even though it is in normal case. So this paper proposes a congestion control scheme to improve the detection accuracy by analysing and studying the characteristics of segmentation information through the AIS(Artificial Immune System).
      The proposed scheme is processed as the following.
      Firstly, we define the data expression using extracted the segmentation feature through analyzing the segmentation information about normal/abnormal state. In order to reduce the complexity of congestion detection, we count the number of the 0s after executing AND operation among the continuously transmitted segmentation information. At the same time, to improve the detection accuracy, we count the number of the 0s among the continuously transmitted segmentation information.
      Secondly, we define the matching rule which discriminates between normal and abnormal based on Euclidean distance.
      Thirdly, we generate the detector set using Negative Selection algorithm considering the frequency of data pattern, especially. On the other hand, since the network status are dynamically changed, if congestion judgement that only depends on the detector set based on Negative Selection algorithm, false detection occurs frequently. In order to compensate these problems, we utilize fuzzy number theory which can infer the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals occurrence time periodically. The performance of proposed scheme is evaluated through the OPNET simulation. Simulation results shows that our scheme efficiently detected congestion states.
      번역하기

      Recently, as Internet users and Internet-related services has increased explosively, high bandwidth has been desired. Thus, Optical burst switching (OBS) was proposed as a new switching paradigm for optical network. OBS network usually employs one-way...

      Recently, as Internet users and Internet-related services has increased explosively, high bandwidth has been desired. Thus, Optical burst switching (OBS) was proposed as a new switching paradigm for optical network.
      OBS network usually employs one-way reservation, which sends a burst control packet (BCP) with a specific offset time before transmitting each data burst frame (BDF). Due to such a property, multiple bursts contend with the same wavelength on the same output link simultaneously and lead to high burst losses. And the contention occurs more frequent as the offered load increases. So, for the better resource utilization of the network, it is required efficient control scheme to resolve contention.
      Therefore, segmentation based congestion control scheme was introduced in OBS network. This scheme is able to regulate the congestion according to segmentation sizes. However, because OBS network employs one-way reservation, segmentation occurs in spite of a low offered load. Therefore, if we only use the information of segmentation sizes, the network state may be detected as congestion even though it is in normal case. So this paper proposes a congestion control scheme to improve the detection accuracy by analysing and studying the characteristics of segmentation information through the AIS(Artificial Immune System).
      The proposed scheme is processed as the following.
      Firstly, we define the data expression using extracted the segmentation feature through analyzing the segmentation information about normal/abnormal state. In order to reduce the complexity of congestion detection, we count the number of the 0s after executing AND operation among the continuously transmitted segmentation information. At the same time, to improve the detection accuracy, we count the number of the 0s among the continuously transmitted segmentation information.
      Secondly, we define the matching rule which discriminates between normal and abnormal based on Euclidean distance.
      Thirdly, we generate the detector set using Negative Selection algorithm considering the frequency of data pattern, especially. On the other hand, since the network status are dynamically changed, if congestion judgement that only depends on the detector set based on Negative Selection algorithm, false detection occurs frequently. In order to compensate these problems, we utilize fuzzy number theory which can infer the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals occurrence time periodically. The performance of proposed scheme is evaluated through the OPNET simulation. Simulation results shows that our scheme efficiently detected congestion states.

      더보기

      목차 (Table of Contents)

      • Ⅰ. 서론 = 1
      • Ⅱ. 관련연구 = 4
      • 2.1. 광 버스트 스위칭 망에서의 Staged Reservation 기법 = 4
      • 2.1.1. 광 버스트 스위칭 기술 = 4
      • 2.1.2. Staged Reservation 기법 = 6
      • Ⅰ. 서론 = 1
      • Ⅱ. 관련연구 = 4
      • 2.1. 광 버스트 스위칭 망에서의 Staged Reservation 기법 = 4
      • 2.1.1. 광 버스트 스위칭 기술 = 4
      • 2.1.2. Staged Reservation 기법 = 6
      • 1) 버스트 세그멘테이션 기법 = 6
      • 2) Staged Reservation 기법 = 8
      • 2.2. 인공 면역 시스템 = 10
      • 2.2.1. 인간면역체계 = 11
      • 1) 인간면역시스템의 구성 = 11
      • 2) 항원 인식 및 면역 세포 활성화 메커니즘 = 13
      • 2.2.2. 면역 원리 = 14
      • 1) Self/Non-self 식별 = 14
      • 2) 위험이론(Danger theory) = 15
      • 2.2.3. 부정선택 기반 응용 모델 = 17
      • Ⅲ. 광 버스트 스위칭 망에서 인공면역체계 기반의 이상 상태 탐지 및 제어 = 19
      • 3.1. 인공면역체계 기반의 이상상태 탐지 = 19
      • 3.1.1. Self/Non-self 정의 및 데이터 표현 방법 정의 = 19
      • 1) Self/Non-self 정의 = 19
      • 2) 유전자 결정 = 20
      • 3) 데이터 표현 방법 = 22
      • 3.1.2. 매칭 규칙 결정 및 검출기 집합 생성 = 26
      • 1) 매칭 규칙 = 26
      • 2) 부정 선택 원리를 응용한 검출기 집합 생성 = 27
      • 3.1.3. 검출기를 이용한 망 상태 감시 = 31
      • 3.1.4. Fuzzy 함수를 이용한 위험도 결정 = 32
      • 1) 위험도 측정 파라미터 정의 = 32
      • 2) 위험 매개 변수의 퍼지 변환 메커니즘 및 위험도 계산 = 33
      • 3.1.5. 위험도를 이용한 차별적 혼잡제어 = 35
      • Ⅳ. 성능 평가 및 분석 = 36
      • 4.1. 시뮬레이션 환경 = 36
      • 4.1.1. 네트워크 모델 = 36
      • 4.1.2. 노드 모델 = 37
      • 4.1.3. 프로세스 모델 = 39
      • 1) 제어 유닛의 프로세스 구조 = 39
      • 2) 스위치의 프로세스 구조 = 41
      • 4.2. 혼잡제어 기법 성능 분석 = 42
      • 4.2.1. 시뮬레이션 환경 설정 = 42
      • 4.2.2. 시뮬레이션 결과 및 성능 분석 = 44
      • 1) 검출기 성능 평가 = 45
      • 2) 전송 성공률, 전송 실패율, 자원이용률 = 47
      • Ⅴ. 결론 = 50
      • 참고문헌 = 52
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼