RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Comparison of Neural Network Techniques for Text Data Analysis

      한글로보기

      https://www.riss.kr/link?id=A106951543

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the ...

      Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the following word or context. So far, many techniques for analyzing sequential data such as text data have been proposed. In this paper, four methods of 1d-CNN, LSTM, BiLSTM, and CLSTM are introduced, focusing on neural network techniques. In addition, by using this, IMDb movie review data was classified into two classes to compare the performance of the techniques in terms of accuracy and analysis time.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. INTRODUCTION
      • 2. NEURAL NETWORK TECHNIQUES
      • 2.1 1-dimensional convolutional neural network
      • 2.2 Long short-term memory
      • Abstract
      • 1. INTRODUCTION
      • 2. NEURAL NETWORK TECHNIQUES
      • 2.1 1-dimensional convolutional neural network
      • 2.2 Long short-term memory
      • 2.3 Bidirectional long short-term memory
      • 2.4 Convolutional long short-term memory
      • 3. COMPARISON VIA IMDB DATA
      • 3.1 1-dimensional convolutional neural network
      • 3.2 Long short-term memory
      • 3.3 Bidirectional long short-term memory
      • 3.4 Convolutional long short-term memory
      • 4. DISCUSSION
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼