RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        몇 가지 재배조건에 따른 산꼬리풀의 생육특성

        이상인,연수호,조주성,이철희 한국자원식물학회 2020 한국자원식물학회지 Vol.33 No.1

        This study was aimed to establish the most effective approach for the cultivation of Veronica rotunda var. subintegra (Nakai) T.Yamaz. plants, which was expected as new ornamental plants. We conducted an experiment using plug seedlings, varied the seeding container type and seeding rate. We also varied seedling quality, planting container, soil type, and shading ratio. Seedling quality was used seedlings produced from different seeding containers and seeding rates. The seedling quality were seeding growth using 162, 200, and 288 trays, and seedings rate was used seedlings produced by sowing 1, 2, 4 and 6 seeds. As a result, 162 trays of seedlings were suitable for use in this study. Plants grown with one seed per cell in individual cells exhibited increased individual growth, but those grown with four seeds per cell exhibited better growth for the whole plant. According to seedling quality, seedlings produced in the 162 trays or with four seeds per cell showed higher growth than other seedlings. In the cultivation of V. rotunda var. subintegra (Nakai) T.Yamaz., seedling growth increased depending on container capacity for both shoot and root parts. Container material had no significant impact on seedling growth. Seedlings grew the best on horticultural substrate, and showed better growth on mixed soils with high decomposed granite content than on peatmoss. 본 연구는 국내 특산식물이며 신 관상식물로 기대되는 산꼬리풀[Veronica rotunda var. subintegra (Nakai) T.Yamaz.]의효과적인 재배법을 구명하고자 수행되었다. 플러그 육묘는 파종용기와 파종량을 달리하였다. 재배는 묘의 소질, 식재용기, 토양종류 및 차광정도를 달리하여 처리하였다. 묘의 소질은 162, 200 및 288구 트레이를 이용하여 육묘한 묘를 사용였으며, 파종량은 1, 2, 4 및 6립을 파종하여 생산된 묘를 사용하였다. 본 연구에서 산꼬리풀의 육묘 시 트레이 종류는 162구가 적절하였으며, 셀 당 1립씩 파종할 경우 각 개체의 생육이 증가하였으나 4립 파종 시에는 전체 식물의 생육에 유리하였다. 묘의 소질에 따른 실험은 162구 트레이에서 생산된 묘와 4립씩 파종하여생산된 묘에서 각기 우수한 생육을 보였다. 산꼬리풀 재배 시 식재용기의 용적량이 커질수록 지상부 및 지하부의 생육이 증가하는 경향이었으며, 용기의 재질에 따른 유의적인 차이는 나타나지 않았다. 토양조건별 생육은 원예상토에서 가장 왕성하였으며, 혼용토에서는 피트모스에 비해 마사토의 함량이 높은 조건에서 양호한 생육을 나타냈다.

      • KCI등재

        딸기 육묘를 위한 모주의 정식시기가 자묘 소질 및 본포 초기생육에 미치는 영향

        박갑순 ( Gab Soon Park ),김영칠 ( Young Chil Kim ),안승원 ( Seoung Won Ann ) 한국환경과학회 2016 한국환경과학회지 Vol.25 No.2

        In this study, we examined the impact of transplant timing of mother plants for seedling strawberry on growth and development of daughter plants and field stage. The leaf growth of treated mother plants and crown thickness were low when transplant was performed on April 10th. Based on the results collected until July 13th, the numbers of daughter plants with more than two leaves were 20.6 and 19.5 for March 10th and March 25th, and these values decreased by April 10th and April 25th showing values of 15.1 and 11.8, respectively. After seedling growth was complete, leaf area and fresh weight of the saplings were remarkably low beginning from the transplant on April 10th. Crown thickness of saplings was generally lower when transplant timing was late. After 45 days of transplant leaf length and width were noticeably lower than the transplant on April 10th and 25th. First cluster was 100% for both the March 10th and 25th transplant, followed April 10th and 25th with values of 66% and 43%. The results revealed that transplant on March 10th and 25th had a greater positive impact on the growth and development of the strawberry cultivar ‘Seolhyang’. A supplementary study will have to be conducted to determine the relationship between the harvest period of the first cluster and the yield of marketable strawberries depending on the transplanting time of mother plants.

      • KCI등재

        식재기구에 따른 소나무 용기묘의 초기생장특성

        고치웅,이관희,김동현,강진택,김동근 한국산림과학회 2017 한국산림과학회지 Vol.106 No.4

        In this study, containerized seedlings of Pinus densiflora (2-0) were planted in Iso-ri, Hwadong-myeon, Sangju-si, Gyeongbuk on April, 2015. It was planted by lightweight planting auger that Kyungpook University has developed and mattock which is the general planting method of containerized seedlings. With the square planting method (1.8×1.8 m), 225 trees were planted respectively and about 2 years of initial growth, survival rate and seedling quality index (SQI) were analyzed and investigated. According to the analysis result, the average root collar diameter (mm) of planted containerized seedlings that used lightweight planting auger and mattock reached 3.77 and 3.94 in 2015, 18.73 and 15.32 in 2016, and 27.8 and 23.9 in 2017 respectively. In addition, the average height of containerized seedlings rated 33.4 and 33.4 in 2015, 89.8 and 74.7 in 2016 and 120.7 and 97.9 in 2017. It turns out that the height of initial growth of containerized seedlings that are planted by lightweight planting auger were much higher than mattock. The survival rate of the containerized seedlings that used lightweight planting auger was also higher by 10% than that used mattock. Also, H/D rate (healthiness) and T/R rate were almost the same, however, for the SQI, 0.60 was for lightweight planting auger and 0.24 for mattock. It seems like the lightweight planting auger is more advantageous than mattock in initial growth. 본 연구는 경북대학교에서 개발한 경량식혈기와 일반적인 용기묘 식재 방법인 괭이를 이용하여 경상북도 상주시 화동면 이소리에 2015년 4월 소나무 용기묘(2-0)를 정방형 식재방법(1.8×1.8 m)으로 식재기구별 각각 225본씩 식재하여 약 2년 동안의 초기생장, 생존율 및 묘목품질지수(SQI)를 조사·분석하였다. 분석결과, 경량식혈기와 괭이를 이용하여 식재 한 용기묘의 평균 근원경(mm)은 각각 2015년에 3.77과 3.94, 2016년에 18.73과 15.32 2017년에 27.8과 23.9로 나타났다. 또한 용기묘의 평균 간장(cm)은 각각 2015년에 33.4와 33.4, 2016년에 89.8과 74.7, 2017년에 120.7과 97.9로 간장 역시 경량식혈기를 이용하여 식재한 용기묘가 괭이를 이용하여 식재한 용기묘 보다 초기 생장이 더 높은 것으로 나타났으며, 생 존율 또한 경량식혈기를 이용한 용기묘의 생존율이 괭이를 이용한 경우 보다 약 10%정도 더 높게 나타났다. 그리고 H/D 율(건전도)과 T/R율은 서로 유사한 값을 나타낸 반면 SQI는 경량식혈기가 0.60, 괭이는 0.24로 나타나 경량식혈기 식재가 괭이 식재에 비해 용기묘의 초기생장에 더 유리한 것으로 판단된다.

      • KCI등재

        국내 식물자원 및 약용식물 추출물이 벼 유묘 생장에 미치는 영향

        지기수,김용훈,박지성,김건우,Ji, Gi-Su,Kim, Yong-Hun,Park, Jee-Sung,Kim, Kun-Woo 한국유기농업학회 2014 韓國有機農業學會誌 Vol.22 No.2

        국내 식물자원 및 약용식물들의 식물 생장촉진 효과를 조사하기 위하여 64종 65점의 추출물 시료를 조제하여 벼(Oryza sativa) 유묘 생장에 미치는 영향을 평가하였다. 그 결과, 11종 12점의 쑥(Artemisia princeps) 경엽, 엉겅퀴(Cirsium japonicum var. maackii) 전초, 진달래(Rhododendron mucronulatum) 가지와 잎, 갈대(Phragmites communis) 줄기, 율무(Coix lacrymajobi var. mayuen) 전초, 싸리(Lespedeza bicolor) 가지와 잎, 산수국(Hydrangea serrata f. acuminata) 전초, 속단(Phlomis umbrosa) 전초, 감초(Glycyrrhiza uralensis) 근경, 감초(G. uralensis) 경엽, 당귀(Angelica gigas) 뿌리 및 천궁(Cnidium officinale) 근경 추출물은 벼 유묘 생장을 촉진시키는 것으로 나타났다. 본 결과에 따라 상기 식물 종의 부위들은 식물 생장촉진용 농가 자가제조 액비 개발을 위한 소재로써 활용가능성이 있는 것으로 판명되었다. This study was conducted to identify plant growth promoting effects of native plant resources and medicinal plants. 65 kinds of plant extracts from 64 species were evaluated based on two rice(Oryza sativa) seedling bioassays for gibberellins and gibberellin-like substances. 12 extracts of Artemisia princeps stem and leaf, Cirsium japonicum var. maackii whole plant, Rhododendron mucronulatum branch and leaf, Phragmites communis stem, Coix lacryma-jobi var. mayuen whole plant, Lespedeza bicolor branch and leaf, Hydrangea serrata f. acuminata whole plant, Phlomis umbrosa whole plant, Glycyrrhiza uralensis Rhizome, G. uralensis stem and leaf, Angelica gigas root, and Cnidium officinale rhizome showed growth promotion of rice seedlings. Our results suggested that the parts of these plants could be the potential sources as farm-made liquid fertilizers for plant growth promotion.

      • KCI등재

        경량식혈기를 이용한 용기묘 식재의 작업공정 및 초기생장 분석

        고치웅 ( Ko Chi-ung ),김동현 ( Kim Dong-hyun ),이관희 ( Lee Kwan-hee ),김진현 ( Kim Jin-hyun ),김동근 ( Kim Dong-geun ) 한국환경복원기술학회(구 한국환경복원녹화기술학회) 2016 한국환경복원기술학회지 Vol.19 No.6

        Due to aging of the rural and mountain populations the labor force is reduced. However work intensity continues to increase, thus, there is a need to improve the current effectiveness of forest operations. This study compared and analyzed the Operation productivity and efficiency of planting containerized seedlings using a battery-powered planting auger and a mattock. Growth was also investigated by looking into the initial growth increments in the planted seedlings. Tasks were investigated by analyzing the process and operation time needed to plant 1 containerized seedling using a planting auger and a mattock. The time spent on the various elements of the planting process was measured with a stopwatch but observations were done continuously. Result of the study shows that with the use of a lightweight planting auger the average time spent to plant a containerized seedling is 18.61 seconds while with the use of a mattock it took an average of 26.96 seconds which clearly demonstrates that the planting auger is more efficient in terms of working hours. Working intensity was also analyzed with the use of a portable heart rate monitor (Polar V800). The average increase in heart rate and work intensity index were analyzed for one planting cycle. It was observed that when using the lightweight planting auger, there was a 46.51% increase in the average heart rate while a 74.67% increase in heart rate when the mattock was used which shows that there is a significant increase in heart rate when mattock is used. In addition, work intensity index was observed to be 29.95% and 47.83% when the planting auger and mattock were used respectively. With the continuous use, work intensity index is significantly higher with the use of the mattock as compared to that of the lightweight planting auger. There were no significant differences on the growth increment of seedlings planted using the different tools until a year after planting, however differences in growth increment were observed after a year. A difference of 15.1 cm in height and 3.41 mm in diameter was observed which shows that the use of lightweight planting auger is excellent for planting containerized seedlings.

      • KCI등재

        백합나무 5년생 실생묘 및 체세포묘 (체세포배 유래 식물체) 간의 생리적 요인, 기공 및 DNA 함량 비교

        김용욱 ( Yong Wook Kim ),문흥규 ( Heung Kyu Moon ) 한국산림과학회 2013 한국산림과학회지 Vol.102 No.4

        Field performance of somatic plants (somatic embryo derived-plants) of yellow-poplar (Liriodendron tulipifera) produced from somatic embryogenesis was compared with that of seedlings at age 5. In comparison of photosynthetic rate (seedling, 10.67 μmol CO2m-2s-1; somatic plant, 9.04 μmol CO2m-2s-1), stomatal conductance rate (seedling, 0.2 H2Om-2s-1; somatic plant, 0.166 H2Om-2s-1) and respiration rate (seedling, 1.71 mmol H2Om-2s-1; somatic plant, 1.513 mmol H2Om-2s-1), no significant differences were found between plants. The seedlings were a little higher in comparison of stomatal density (seedling, 23.33/mm2; somatic plant, 22.43/mm2), length (seedling, 25.83 μm; somatic plant, 23.46 μm) and width (seedling, 15.87 μm; somatic plant, 15.3 μm). In comparison of DNA content of the leaves using flow cytometry, no differences in ploidy level were found between the seedlings and somatic plants.

      • KCI등재

        Mass Propagation of Plug Seedling using Stem Cutting and Their Tuber Yield in Potato

        Yang-Mun Park,Chang-Khil Song,Bong-Kyoon Kang,Dong-Woo Kim,Dong-Hwan Ko 韓國作物學會 1999 Korean journal of crop science Vol.44 No.3

        For the mass production of plug seedlings in cultivar ‘Dejima’ potato (Solanum tuberosum L.) the optimal apical cutting diameter for rooting and rapid multiplication of stem cuttings in hydroponics were determined. In addition, the best planting date was predicted to increase tuber yield of plug seedlings at fall cropping in Cheju-Do, Korea. Days to initial rooting decreased as the cutting diameter was reduced. Plant height, leaf number, root length and root weight per plant were favorable as the cutting diameter was small. The ideal cutting diameter was 1-2 mm in this experiment. In the hydroponic cultures, the Japanese standard (JS) nutrient solution was the most effective for multiplication of stem cuttings. It was able to propagate more than 20 times a month from a single mother plant. Viability of plants, which were derived from plug seedlings using stem cuttings, was excellent when transplanted to the field. The number of tubers and tuber yield in both of the plug seedlings and seed potato planting plots were high when planted on 25 August. The number and yield were reduced when planted on 15 August, 5 September and 15 September. The degree of decrease of tuber yield in the plug seedling planting plot however, was lower than that of seed potatoes when the planting date was late. In the case of small tubers (under 30 g), the number of tubers and tuber yield were evidently increased in the seed potato tuber planting plot; the yield of large tuber (over 80g) in the plug seedling planting plot was higher than that of the seed potato. The total tuber yield per plant in the plug seedling planting plot was less than that of the seed potato; therefore, in order to increase tuber yield it was necessary to increase field plant density.

      • KCI등재

        Mass Propagation of Plug Seedling using Stem Cutting and Their Tuber Yield in Potato

        Park, Yang-Mun,Song, Chang-Khil,Kang, Bong-Kyoon,Kim, Dong-Woo,Ko, Dong-Hwan The Korean Society of Crop Science 1999 Korean journal of crop science Vol.44 No.3

        For the mass production of plug seedlings in cultivar ‘Dejima’ potato (Solanum tuberosum L.) the optimal apical cutting diameter for rooting and rapid multiplication of stem cuttings in hydroponics were determined. In addition, the best planting date was predicted to increase tuber yield of plug seedlings at fall cropping in Cheju-Do, Korea. Days to initial rooting decreased as the cutting diameter was reduced. Plant height, leaf number, root length and root weight per plant were favorable as the cutting diameter was small. The ideal cutting diameter was 1-2 mm in this experiment. In the hydroponic cultures, the Japanese standard (JS) nutrient solution was the most effective for multiplication of stem cuttings. It was able to propagate more than 20 times a month from a single mother plant. Viability of plants, which were derived from plug seedlings using stem cuttings, was excellent when transplanted to the field. The number of tubers and tuber yield in both of the plug seedlings and seed potato planting plots were high when planted on 25 August. The number and yield were reduced when planted on 15 August, 5 September and 15 September. The degree of decrease of tuber yield in the plug seedling planting plot however, was lower than that of seed potatoes when the planting date was late. In the case of small tubers (under 30 g), the number of tubers and tuber yield were evidently increased in the seed potato tuber planting plot; the yield of large tuber (over 80g) in the plug seedling planting plot was higher than that of the seed potato. The total tuber yield per plant in the plug seedling planting plot was less than that of the seed potato; therefore, in order to increase tuber yield it was necessary to increase field plant density.

      • KCI등재

        벼 낙수시기 기준 자운영 파종적기 구명

        김상열,오성환,최경진,김정일,박성태,여운상,강항원 한국작물학회 2009 Korean journal of crop science Vol.54 No.3

        자운영 안전입모수 확보를 위한 벼 낙수시기를 기준 자운영 파종적기를 시험한 결과는 다음과 같다. 1. 벼 낙수 전 5일~ 낙수 후 5일 사이에 파종시 자운영 종자가 발아를 할 수 있는 충분한 토양수분이 있어 월동후 평균 입모수 및 월동율은 각각 530~670 개/m2 , 79.1~82.8% 로 높아 낙수 10일 이후 파종 보다 입모수 확보에 유리하였다. 2. 월동후 전생육기간 파종시기별 자운영 건물중도 낙수 전 5일~ 낙수후 5일에서 573~746kg /10a으로 높아 17.0~20.5kg /10a 질소를 생산할 수 있었다. 3. 자운영 종자를 너무 늦은 10월초나 낙수 10일이후에 뿌리면 자운영 종자가 출아를 하는데 온도가 낮고 수분이 부족하여 생육부진으로 월동율이 낮아 자운영 입모수가 부족하였다. 4. 낙수 10일전에 너무 일찍 파종해도 출아를 한 자운영이 습해를 받아 입모가 불량하였다. 5. 종자수량도 낙수 전 5일~ 낙수후 5일에 파종시 24.2~30.8kg /10a으로 높았으나 낙수후 10일 이후 파종은 종자 생산량도 19.4 kg/10a으로 낮았다. 따라서 자운영 안전 입모수 확보, 월동율, 건물생산성을 고려한 자운영 파종적기는 낙수전 5일(9월 20일)~ 낙수후 5일(9월 30일)이었다. Sufficient seedling establishment of Chinese milk vetch (CMV) is the most important factor in the CMV cultivation. In order to obtain sufficient seedling stand, CMV seed should be planted at right seed planting date. An optimum CMV seed planting time for stable seedling establishment was determined based on the final water drainage time for rice harvest in fall. Five planting times from 10 days before water drainage (DBWD) to 15 days after water drainage (DAWD) at five day interval were evaluated during the period of 2006-2007 and 2007-2008 and the optimum CMV seed planting time was determined based on seedling stand, winter survival rate, and dry matter production. CMV seedling stand before winter was high with 575~1,050~;plants/m2 regardless of seed planting times but after overwintering, it was greater in seed planting date between 5 DBWD to 5 DAWD than that of 10 to 15 DAWD treatments. Winter survival rate, dry matter production and seed production yield also showed similar trend to the seedling establishment. On the other hand, when CMV seeds were sowed early at 10 DBWD, seedling stand and winter survival rate were lower than that of 5 DBWD to 5 DAWD. This result indicates that an optimum CMV seed planting time based on the final water drainage could be between 5 DBWD (September 20) to 5 DAWD (September 30).

      • KCI등재

        자연림 복원을 위한 모듈군락식재 실험연구

        한용희 ( Yong-hee Han ),박석곤 ( Seok-gon Park ) 한국환경생태학회 2022 한국환경생태학회지 Vol.36 No.3

        다양한 수종의 묘목을 고밀도로 심는 모듈군락식재가 기존의 성목식재보다 자연림 복원 효과성이 뛰어난지 알고자 야외 실험을 했다. 또 모듈군락식재의 식재밀도 차이에 따라 생장이 촉진되는지, 또 식피율이 높아지는지를 알아보았다. 큰나무를 넓게 띄어 심는 성목식재구(대조구)와 다종의 묘목을 고밀도로 심는 모듈군락식재구(처리구)로 구분했고, 다시 식재밀도에 따른 3주/㎡와 1주/㎡ 모듈군락식재구로 나눠 실험을 설계했다. 2019년 5월부터 26개월간 공시재료의 생존율, 생장량(수고, 수관폭, 근원직경), 식피율을 측정했고, 측정 수고값을 활용하여 장래 수고생장을 예측했다. 모듈군락식재구의 생존율과 상대생장량이 성목식재구보다 높았다. 모듈군락식재구의 식피율은 23개월 이전에 지표면을 완전히 덮었지만, 성목식재구는 이식스트레스로 인해 오히려 식피율이 낮아졌다. 고밀도로 심은 모듈군락식재구의 묘목이 자라서 식재 후 5∼6.5년 만에 성목식재구보다 더 높이 자랄 것으로 예측됐다. 이런 결과를 이끈 원인은 다종(多種)·묘목·고밀도 식재와 토양개량·멀칭 등의 식재기반 개선 때문이라 본다. 즉, 모듈군락식재구에 심은 묘목은 큰나무를 심은 성목식재구보다 식재 후 환경 적응력이 뛰어나 생존율이 높고, 초기 생장량이 많았을 것이다. 다양한 자생수종의 고밀도 혼식은 상호보완적 환경압을 완화하는 동시에 개체간 경쟁을 유발해 생장 촉진을 이끌었다. 더불어, 식재기반 개선은 묘목의 활착율 상승과 생장량 증가에 유효했다고 본다. 식재밀도가 높을수록 식피율이 급격히 늘어나, 제초 등의 사후관리비 절감 효과가 있을 것이다. 모듈군락식재구(3주/㎡, 1주/㎡)의 식재밀도가 높았을 때 수고생장이 촉진되었고, 수관폭·근원직경은 식재밀도가 낮았을 때 높아지는 경향을 보였지만, 통계적 차이가 없었다. This study aims to investigate whether modular community planting, which entailed planting a variety of species of seedlings at high density, was more effective in restoring natural forests than the existing mature tree planting. We also investigated whether the planting density of the modular community planting facilitates growth or improves the tree layer coverage. We conducted outdoor experiments in which the samples were divided into a mature tree planting plot (control plot), where mature trees were planted at wide intervals, and a modular community planting (MCP) plot (treatment plot), where multiple seedlings were planted in high density. The MCP plot was further divided into the plot in which 3 seedlings were planted per ㎡and the plot of 1 seedling per ㎡. We measured the specimens’ survival rate, growth rate (tree height, crown width, and root collar diameter), and cover rate for 26 months from May 2019 and the predicted future tree height growth using the measured tree height. The survival rate and relative growth rate of the MCP were higher than those of the mature tree planting plot. The vertical coverage rate of the tree crown in the MCP exhibited complete coverage of the ground before 23 months, while the coverage rate of the mature tree planting decreased due to transplantation stress. The seedlings in the MCP, which were planted at high density, grew well and were predicted to grow higher than the mature trees in the large tree planting plot within 5 to 6.5 years after planting. It was due to multiple species, seedlings, high-density planting, and planting foundation improvements, such as soil enhancement and mulching. In other words, the seedlings planted in the MCP had a higher survival rate as their environmental adaptation after planting was better, and their early growth was also larger than the trees in the mature planting plot. The high-density mixed planting of various native species not only mitigated the inter-complementary environmental pressures but also facilitated growth by inducing competition between species. Moreover, the planting foundation improvement effectively increased the seedlings’ viability and growth rate. A reduction in follow-up management costs is expected as the tree layer coverage sharply increases due to the higher planting density. In the MCP (3 seedlings per ㎡and 1 seedling per ㎡), the tree height growth was promoted with the higher planting density, and the crown width and root collar diameter tended to be larger with the lower planting density, but these differences were not statistically significant.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼