RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Online railway wheel defect detection under varying running-speed conditions by multi-kernel relevance vector machine

        Yi-Qing Ni,Yuan-Hao Wei,You-Wu Wang 국제구조공학회 2022 Smart Structures and Systems, An International Jou Vol.30 No.3

        The degradation of wheel tread may result in serious hazards in the railway operation system. Therefore, timely wheel defect diagnosis of in-service trains to avoid tragic events is of particular importance. The focus of this study is to develop a novel wheel defect detection approach based on the relevance vector machine (RVM) which enables online detection of potentially defective wheels with trackside monitoring data acquired under different running-speed conditions. With the dynamic strain responses collected by a trackside monitoring system, the cumulative Fourier amplitudes (CFA) characterizing the effect of individual wheels are extracted to formulate multiple probabilistic regression models (MPRMs) in terms of multi-kernel RVM, which accommodate both variables of vibration frequency and running speed. Compared with the general single-kernel RVM-based model, the proposed multi-kernel MPRM approach bears better local and global representation ability and generalization performance, which are prerequisite for reliable wheel defect detection by means of data acquired under different running-speed conditions. After formulating the MPRMs, we adopt a Bayesian null hypothesis indicator for wheel defect identification and quantification, and the proposed method is demonstrated by utilizing real-world monitoring data acquired by an FBG-based trackside monitoring system deployed on a high-speed trial railway. The results testify the validity of the proposed method for wheel defect detection under different running-speed conditions.

      • SCOPUS

        Self-validating Pneumatic Actuator Fault Diagnosis Based on Relevance Vector Machine

        Zhigang Feng,Ru Wang 보안공학연구지원센터 2014 International Journal of Control and Automation Vol.7 No.11

        In order to solve the fault diagnosis problem of self-validating (SEVA) pneumatic actuator, an actuator fault diagnosis approach based on relevance vector machine (RVM) regression modeling and relevance vector machine (RVM) multi-classifier is proposed. The RVM regression is used to establish the normal models of the SEVA pneumatic actuator. The residuals generated by comparing the output of the models and the actual SEVA actuator are used as the nonlinear features. Then, the structure of the RVM for multi-classification is designed using k-meaning clustering methods, which is used as fault classifier to identify the condition and fault pattern of the SEVA actuator. The proposed approach is verified using fault data generated by DABLib model and actuator data from Lublin Sugar Factory and compared with support vector machine (SVM) fault diagnosis approach. The results indicate that the proposed approach overcomes the drawbacks of SVM and resolves the small sample and nonlinear problem in SEVA pneumatic actuator fault diagnosis.

      • Machine Learning for Wideband Localization

        Thang Van Nguyen,Youngmin Jeong,Hyundong Shin,Win, Moe Z. IEEE 2015 IEEE journal on selected areas in communications Vol.33 No.7

        <P>Wireless localization has a great importance in a variety of areas including commercial, service, and military positioning and tracking systems. In harsh indoor environments, it is hard to localize an agent with high accuracy due to non-line-of-sight (NLOS) radio blockage or insufficient information from anchors. Therefore, NLOS identification and mitigation are highlighted as an effective way to improve the localization accuracy. In this paper, we develop a robust and efficient algorithm to enhance the accuracy for (ultrawide bandwidth) time-of-arrival localization through identifying and mitigating NLOS signals with relevance vector machine (RVM) techniques. We also propose a new localization algorithm, called the two-step iterative (TSI) algorithm, which converges fast with a finite number of iterations. To enhance the localization accuracy as well as expand the coverage of a localizable area, we continue to exploit the benefits of RVM in both classification and regression for cooperative localization by extending the TSI algorithm to a centralized cooperation case. For self-localization setting, we then develop a distributed cooperative algorithm based on variational Bayesian inference to simplify message representations on factor graphs and reduce communication overheads between agents. In particular, we build a refined version of Gaussian variational message passing to reduce the computational complexity while maintaining the localization accuracy. Finally, we introduce the notion of a stochastic localization network to verify proposed cooperative localization algorithms.</P>

      • SCIESCOPUSKCI등재

        Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

        Gomathy, V.,Selvaperumal, S. The Korean Institute of Power Electronics 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.3

        Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

      • KCI등재

        Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

        V. Gomathy,S. Selvaperumal 전력전자학회 2016 JOURNAL OF POWER ELECTRONICS Vol.16 No.3

        Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼