RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        터널 소성영역에 따른 터널 천단토압 해석

        박신영,한희수 한국산학기술학회 2020 한국산학기술학회논문지 Vol.21 No.11

        In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect. 본 연구는 금속의 소성 가공 시 변형을 해석하기 위한 금속소성학의 개념, 지반공학 관점인 Terzaghi’s 토압론과 이를 수정한 수정 Terzaghi’s 토압론, Mohr-Coulomb 항복조건을 이용한 미끄러짐선장이론의 세가지 방법을 이용하여 각 방법에 따른 터널의 소성영역 및 내부 토압을 산정하였다. 세가지 방법 모두 등방성 재료의 평면변형율조건 해석의 이차원 수학적 해석 모델이다. 금속소성학의 이론을 사용할 경우, 터널에 내부압력이 작용하는 것으로 가정하여 지반의 소성영역 및 지반 내부토압을 구한 결과이므로, 중력만 작용하는 실제 터널 현장과는 맞지 않는 다른 결과가 도출되었다. 미끄러짐선장 이론을 통해 소성영역 형성범위 및 토압을 분석한 결과, 대수나선형태로 파괴면이 형성되는 것으로 나타났고 이는 선행연구와 비교를 통해 실제와 유사한 것으로 나타났다. 또한, 터널 굴착 등으로 인해 발생하는 지반의 체적 변화를 고려한 토압 산정식을 수학적으로 검토하고 이를 Terzaghi’s 토압과 비교하였다. 지반의 체적 팽창으로 인해 발생하는 다일러턴시 효과로 인한 강도 증진을 고려하였으며, Terzaghi’s 토압의 문제점을 분석하고 토피고와 내부마찰각을 변수로 이론적 방법을 통한 토압을 각각 비교·검토하였다. Terzaghi’s 토압론과 이를 수정한 수정 Terzaghi’s 토압론의 경우, 소성영역 범위를 임의로 가정하였으므로, 두 이론 모두 터널의 소성영역을 해석할 수 없다. 이론적 방법을 통한 토압 산정 결과, Terzaghi’s 토압의 경우 팽창성을 고려한 토압에 비해 토압이 과도하게 크게 산정되었으며 이는 지반의 체적변화로 인한 다일러턴시 효과를 무시하고, 이완영역을 과도하게 가정하였기 때문이다.

      • KCI등재

        Numerical simulation of hydro-mechanical constraints on the geometry of a critically tapered accretionary wedge

        송인선,고희재 한국지질과학협의회 2020 Geosciences Journal Vol.24 No.3

        A critically tapered active accretionary wedge was simulated using a numerical analysis of plastic slip-line theory to understand the mechanics of morphologic evolution. The concept of critical state soil mechanics was applied to describe the entire wedge area overlying a basal décollement fault. Presuming a condition of two-dimensional plane strain along the compressional direction, we obtained the numerical solution of conjugate plastic slip lines at a critical state of stress defined by the Coulomb yield criterion. The velocity vectors were obtained by applying the associate flow rule with the boundary conditions at the upper surface of the wedge. Finally, the detachment was determined from the effective stress condition inside the wedge and the sliding friction coefficient along the fault. Our numerical simulations demonstrate that the morphology of a critically tapered wedge is dependent on the frictional strengths of both the wedge materials and the basal fault. The critical taper angle decreases with increasing internal friction angle and decreasing basal friction coefficient. The results also revealed that the pore pressure controls the morphology of the accretionary wedge for cohesive sediments but not for non-cohesive materials. The effect of pore pressure on the morphology of a critically tapered accretionary wedge becomes more significant as the cohesion increases. Assuming that the cohesion is very low, we could infer the ranges of strengths that most observed wedge geometry data have 0.3–0.6 for the basal friction coefficient and ~35–45° for the internal friction angle of the wedge materials.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼