RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Touch-actuated transdermal delivery patch for quantitative skin permeation control

        Kim, Bongsoo,Seong, Keum-Yong,You, Insang,Selvaraj, Veerapandian,Yim, Sang-Gu,O’Cearbhaill, Eoin D.,Jeong, Unyong,Yang, Seung Yun Elsevier 2018 Sensors and actuators. B Chemical Vol.256 No.-

        <P><B>Abstract</B></P> <P>With increasing demands on drug delivery <I>via</I> a transdermal route, there is a therapeutic and regulatory need for on-demand dosage control. Ideally, on-demand dose control would be based on a low-cost, scalable mechanical mechanism without the requirement for ancillary equipment. In this study, we report a touch-actuated transdermal delivery (TATD) patch which provides quantitative permeation control by the degree of mechanical pressing. The patch contains a refillable drug solution reservoir, strain sensor, and drug chamber with an array of microneedles. Mathematical functions are used to predict the normal force applied to the drug reservoir, drug solution released into the drug chamber, and amount of the permeated drug. The final relationship between permeation level and normal force is expressed as a simple equation, which allows for the precise control of drug permeation <I>via</I> external mechanical stimulation. This relationship is demonstrated by image analysis of the permeated drug through animal skin tissue. The TATD patch offers a suitable platform for on-demand control of therapeutic delivery in wearable healthcare systems.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A touch-actuated transdermal delivery (TATD) patch providing quantitative permeation control by mechanical pressing has been developed. </LI> <LI> Mathematical functions are used to predict the normal force applied to the drug reservoir, drug solution released into the drug chamber, and amount of the permeated drug. </LI> <LI> The relationships are clarified by release tests and <I>ex vivo</I> skin penetration tests <I>via</I> the permeated drug through animal skin tissue. </LI> </UL> </P>

      • SCIESCOPUSKCI등재

        Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N,O-carboxymethyl chitosan composite nanogels against Staphylococcus epidermidis

        Wanhe Luo,Yongtao Jiang,Jinhuan Liu,Beibei Sun,Xiuge Gao,Samah Attia Algharib,Dawei Guo,Jie Wei,Yurong Wei The Korean Society of Veterinary Science 2024 Journal of Veterinary Science Vol.25 No.2

        Background: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. Objectives: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. Methods: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. Results: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. Conclusions: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.

      • Photothermal Control of Membrane Permeability of Microcapsules for On-Demand Release

        Jeong, Woong-Chan,Kim, Shin-Hyun,Yang, Seung-Man American Chemical Society 2014 ACS APPLIED MATERIALS & INTERFACES Vol.6 No.2

        <P>We report the use of a simple microfluidic device for producing microcapsules with reversible membrane permeability that can be remotely controlled by application of near-infrared (NIR) light. Water-in-oil-in-water (W/O/W) double-emulsion drops were prepared to serve as templates for the production of mechanically stable microcapsules with a core–shell structure and highly uniform size distribution. A biocompatible ethyl cellulose shell was formed, containing densely packed thermoresponsive poly(<I>N</I>-isopropylacrylamide) (pNIPAAm) particles in which gold nanorods were embedded. Irradiation with a NIR laser resulted in heating of the hydrogel particles due to the photothermal effect of the gold nanorods, which absorb at that wavelength. This localized heating resulted in shrinkage of the particles and formation of macrogaps between them and the matrix of the membrane. Large encapsulated molecules could then pass through these gaps into the surrounding fluid. As the phase transition behavior of pNIPAAm is highly reversible, this light-triggered permeability could be repeatedly switched on and off by removing the laser irradiation for sufficient time to allow the gold nanorods to cool. This reversible and remote control of permeability enabled the programmed release of encapsulants, with the time and period of the open valve state able to be controlled by adjusting the laser exposure. This system thus has the potential for spatiotemporal release of encapsulated drugs.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/aamick/2014/aamick.2014.6.issue-2/am4037993/production/images/medium/am-2013-037993_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/am4037993'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼