RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Structural system identification by measurement error-minimization observability method using multiple static loading cases

        Feng-Liang Zhang,Jun Lei,Jose Antonio Lozano-Galant,Dong Xu,Jose Turmo 국제구조공학회 2022 Smart Structures and Systems, An International Jou Vol.30 No.4

        Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.

      • KCI등재

        Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

        Eric R. Lalonde,Kaoshan Dai,Girma Bitsuamlak,Wensheng Lu,Zhi Zhao 한국풍공학회 2020 Wind and Structures, An International Journal (WAS Vol.30 No.6

        Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall – capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

      • SCIESCOPUS

        Aggregation multigrid method for schur complement system in FE analysis of continuum elements

        Ko, Jin-Hwan,Lee, Byung Chai Techno-Press 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.30 No.4

        An aggregation multigrid method (AMM) is a leading iterative solver in solid mechanics. Recently, AMM is applied for solving Schur Complement system in the FE analysis of shell structures. In this work, an extended application of AMM for solving Schur Complement system in the FE analysis of continuum elements is presented. Further, the performance of the proposed AMM in multiple load cases, which is a challenging problem for an iterative solver, is studied. The proposed method is developed by combining the substructuring and the multigrid methods. The substructuring method avoids factorizing the full-size matrix of an original system and the multigrid method gives near-optimal convergence. This method is demonstrated for the FE analysis of several elastostatic problems. The numerical results show better performance by the proposed method as compared to the preconditioned conjugate gradient method. The smaller computational cost for the iterative procedure of the proposed method gives a good alternative to a direct solver in large systems with multiple load cases.

      • KCI등재

        Aggregation multigrid method for schur complement system in FE analysis of continuum elements

        Jin Hwan Ko,이병채 국제구조공학회 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.30 No.4

        An aggregation multigrid method (AMM) is a leading iterative solver in solid mechanics. Recently, AMM is applied for solving Schur Complement system in the FE analysis of shell structures. In this work, an extended application of AMM for solving Schur Complement system in the FE analysis of continuum elements is presented. Further, the performance of the proposed AMM in multiple load cases, which is a challenging problem for an iterative solver, is studied. The proposed method is developed by combining the substructuring and the multigrid methods. The substructuring method avoids factorizing the full-size matrix of an original system and the multigrid method gives near-optimal convergence. This method is demonstrated for the FE analysis of several elastostatic problems. The numerical results show better performance by the proposed method as compared to the preconditioned conjugate gradient method. The smaller computational cost for the iterative procedure of the proposed method gives a good alternative to a direct solver in large systems with multiple load cases.

      • KCI등재

        The influence of convoy loading on the optimized topology of railway bridges

        Arne Jansseune,Wouter De Corte 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.64 No.1

        This paper presents the application of topology optimization as a design tool for a steel railway bridge. The choice of a steel railway bridge is dictated by the particular situation that it is suitable for topology optimization design. On the one hand, the current manufacturing techniques for steel structures (additive manufacturing techniques not included) are highly appropriate for material optimization and weight reduction to improve the overall structural efficiency, improve production efficiency, and reduce costs. On the other hand, the design of a railway bridge, especially at higher speeds, is dominated by minimizing the deformations, this being the basic principle of compliance optimization. However, a classical strategy of topology optimization considers typically only one or a very limited number of load cases, while the design of a steel railway bridge is characterized by relatively concentrated convoy loads, which may be present or absent at any location of the structure. The paper demonstrates the applicability of considering multiple load configurations during topology optimization and proves that a different and better optimal layout is obtained than the one from the classical strategy.

      • KCI등재

        A topology optimization method for multiple load cases and constraints based on element independent nodal density

        Jijun Yi,Jianhua Rong,Tao Zeng,X. Huang 국제구조공학회 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.45 No.6

        In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated as minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used as the design variables. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such as the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

      • SCIESCOPUS

        A topology optimization method of multiple load cases and constraints based on element independent nodal density

        Yi, Jijun,Rong, Jianhua,Zeng, Tao,Huang, X. Techno-Press 2013 Structural Engineering and Mechanics, An Int'l Jou Vol.45 No.6

        In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼