RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        A hybrid PET-MRI: An integrated molecular-genetic imaging system with HRRT-PET and 7.0-T MRI

        Cho, Zang-Hee,Son, Young-Don,Kim, Hang-Keun,Kim, Kyoung-Nam,Oh, Se-Hong,Han, Jae-Yong,Hong, In-Ki,Kim, Young-Bo JOHN WILEY & SONS LTD 2007 INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHN Vol.17 No.4

        <P>A PET-MRI fusion system is developed for molecular-genetic imaging. The purpose of the system is to obtain images of the in-vivo human brain using two high-end imaging devices, an advanced PET and an ultrahigh-field MRI. These are the HRRT-PET, a high-resolution research tomograph dedicated to brain imaging on the molecular level, and the 7.0-T MRI, an ultrahigh field version used for morphological imaging. HRRT-PET delivers high-resolution molecular imaging with a resolution down to 2.5 mm FWHM, which is currently the highest spatial resolution available for the observation of the human brain's molecular activities, including enzymes and receptors, which are manipulated genetically, such as reporter genes and probes. The 7.0-T MRI began to reveal submillimeter resolution images of the cortical as well as deep brain areas, down to 250 μm, which allows us to visualize the fine details of the cortical and brainstem areas, including the line of Gennari in the visual cortex and the corticospinal tracts in the pontine area. The current PET-MRI fusion imaging system produces the highest quality images of molecular and genetic activities of the human brain in vivo. It is starting to provide many answers to the key questions about the neurological diseases. Some of these start providing answers to many cognitive neuroscience problems with clear molecular and genetic bases. There is great potential in the PET-MRI for early diagnosis of cancers as well as other neurological diseases, which we were previously unable to diagnose, such as microscopic molecular changes that occur in Parkinson's and Alzheimer's diseases. © 2007 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 17, 252–265, 2007</P>

      • A fusion PET–MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain

        Cho, Zang-Hee,Son, Young-Don,Kim, Hang-Keun,Kim, Kyoung-Nam,Oh, Se-Hong,Han, Jae-Yong,Hong, In-Ki,Kim, Young-Bo WILEY-VCH Verlag 2008 Proteomics Vol.8 No.6

        <P>We have developed a positron emission tomography (PET) and magnetic resonance imaging (MRI) fusion system for the molecular-genetic imaging (MGI) of the in vivo human brain using two high-end imaging devices: the HRRT-PET, a high-resolution research tomograph dedicated to brain imaging on the molecular level, and the 7.0 T-MRI, an ultra-high field version used for morphological imaging. HRRT-PET delivers high-resolution molecular imaging with a resolution down to 2.5 mm full width at half maximum (FWHM), which allows us to observe the brain's molecular changes using the specific reporter genes and probes. On the other front, the 7.0 T-MRI, with submillimeter resolution images of the cortical areas down to 250 μm, allows us to visualize the fine details of the brainstem areas as well as the many cortical and subcortical areas. The new PET–MRI fusion imaging system will provide many answers to the questions on neurological diseases as well as cognitive neurosciences. Some examples of the answers are the quantitative visualization of neuronal functions by clear molecular and genetic bases, as well as diagnoses of many neurological diseases such as Parkinson's and Alzheimer's. The salient point of molecular-genetic imaging and diagnosis is the fact that they precede the morphological manifestations, and hence, the early and specific diagnosis of certain diseases, such as cancers.</P>

      • KCI등재후보

        Molecular Imaging in the Age of Genomic Medicine

        Byun, Jong-Hoe Korea Genome Organization 2007 Genomics & informatics Vol.5 No.2

        The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼