RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 동조액체기둥감쇠기의 동적 특성

        이성경,정희산,민경원 단국대 부설 리모델링연구소 2009 리모델링 연구소 논문집 Vol.7 No.2

        The purpose of this study is to verify the transfer function of input acceleration and output control force based on linearizing a damping term of Tuned Liquid Column Damper(TLCD) with nonlinearity analytically. In addition, analysis is conducted for dynamic characteristics according to the design parameter such as section ratio of both vertical and horizontal column and the level of liquid in the vertical column which is used for tuning method. The dynamic characteristics is identified by the analysis for the natural frequency, damping ratio and effective mass ratio of TLCD and a shaking table test for the transfer function. The results indicates that the level of liquid and section ratio affect the characteristics of damping ratio and mass ratio. Damping and mass ratio increase as the section of vertical column of TLCD decreases due to turbulence in the elbow of TLCD.

      • SCIESCOPUS

        Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion

        Wu, Jong-Cheng,Wang, Yen-Po,Chen, Yi-Hsuan Techno-Press 2012 Smart Structures and Systems, An International Jou Vol.9 No.2

        In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%, 40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.

      • KCI등재후보

        Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion

        Jong-Cheng Wu,Yen-Po Wang,Yi-Hsuan Chen 국제구조공학회 2012 Smart Structures and Systems, An International Jou Vol.9 No.2

        In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%,40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.

      • Experimental Evaluation on Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitudes

        Lee, Sung-Kyung,Lee, Hye-Ri,Min, Kyung-Won 단국대 부설 리모델링연구소 2010 리모델링 연구소 논문집 Vol.8 No.1

        In this study, nonlinear dynamic characteristics of a tuned liquid column damper (TLCD) varying with the amplitude of excitation input are evaluated through shaking table tests and numerical model of a TLCD. The tuned mass damper (TMD) analogy of a TLCD is used to simplify the formulation, in which involves equivalent viscous damping of the inherent nonlinear damping term of a TLCD. The equivalent TMD model of a TLCD shows that the dynamic behavior of a TLCD is affected by the natural frequency, the damping ratio and the ratio of total liquid mass to the mass in horizontal column of a TLCD. Shaking table test is performed to obtain experimental transfer functions that describe the dynamic behavior of a TLCD specimen subjected to a harmonic loading with various excitation amplitudes. Transfer functions for various excitation amplitudes are measured from shaking table acceleration to both the liquid displacement within a TLCD container and the control force produced by a TLCD specimen. Also, the dissipation energy due to the inherent damping of a TLCD is measured from the shaking table test varying with excitation amplitude. The variation of design parameters of a TLCD according to the excitation amplitude is investigated by comparing the transfer functions obtained from the shaking table test to those derived from the TMD analogy of a TLCD. These results showed that both the natural frequency and the mass ratio of a TLCD are independent on the variation of excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitude.

      • KCI등재

        Estimation of active multiple tuned mass dampers for asymmetric structures

        Chunxiang Li,Xueyu Xiong 국제구조공학회 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.29 No.5

        This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

      • SCIESCOPUS

        Estimation of active multiple tuned mass dampers for asymmetric structures

        Li, Chunxiang,Xiong, Xueyu Techno-Press 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.29 No.5

        This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

      • KCI우수등재

        레버형 질량동조감쇠기에 의한 진동제어

        심철권(Shim, Chul-Kwon),은희창(Eun, Hee-Chang),김진봉(Kim, Jin-Bong) 대한건축학회 2018 大韓建築學會論文集 : 構造系 Vol.34 No.12

        This paper considers the seismic performance of lever-type tuned mass damper(TMD). The lever-type TMD is designed utilizing the seismic-performance of TMD and the control force required for constraining story drift. The TMD is basically designed by tuning the frequency of primary structure. Thus, the TMD plays an important role to reduce the dynamic responses. The lever-type TMD has a merit to control more displacement responses than the existing TMD due to the control forces. It is shown that the optimum design of lever-type TMD is affected by the ratio of the TMD mass with respect to the mass of the primary structure, the damping ration of the primary structure, and the length ratio of the lever. A numerical example exhibits the effectiveness of the dynamic control by the lever-type TMD and its validity is illustrated in a three-story building structure subjected to earthquake.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼