RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Effect of Porcine Oocyte Chromatin Configuration on the Maturation and Development Potential

        Min-Gu Lee,Jin-Yu Zhang,Rong-Xun Han,Yun-Fei Diao,Reza K. Oqani,Dong-Il Jin 한국동물번식학회 2012 Reproductive & Developmental Biology(Supplement) Vol.36 No.2s

        In all the studies of mammalian species, chromatin in the germinal vesicle (GV) is initially decondensed with the nucleolus not surrounded by heterochromatin (the NSN configurations). During oocyte growth, the GV chromatin condenses into perinucleolar rings (the SN configurations) or other corresponding configurations with or without the perinucleolar rings, depending on species. During oocyte maturation, the GV chromatin is synchronized in a less condensed state before germinal vesicle breakdown (GVBD) in species that has been minutely studied. As not all the species show the SN configuration and gene transcription always stops at the late stage of oocyte growth, it is suggested that a thorough condensation of GV chromatin is essential for transcriptional repression. Because the GV chromatin status is highly correlated with oocyte competence, oocytes must end the NSN configuration before they gain the full meiotic competence and they must take on the SN or corresponding configurations to stop gene transcription before they acquire the competence for early embryonic development. In this study, we firstly investigated whether the follicle size could determine chromatin configuration in porcine oocyte. For this experiment, follicles was divided into three groups (<1 mm follicle, 1~3 mm follicle and 3~6 follicle). Using DAPI staining, the GV nucleolus and chromatin of porcine oocytes was classified into SN, SN-NSN and NSN configurations. MⅠ and M Ⅱ of three groups's Mature oocytes by staining was confirmed the configuration of chromatin. The maturation rate and parthenogenetic development potential were significant different between the SN and NSN configurations oocytes. These results indicated that chromatin changes in GV oocytes affect the development potential of porcine embryos.

      • KCI등재

        Homeostatic balance of histone acetylation and deconstruction of repressive chromatin marker H3K9me3 during adipocyte differentiation of 3T3-L1 cells

        나한흠,김근철 한국유전학회 2018 Genes & Genomics Vol.40 No.12

        Background Adipocyte differentiation is completed by changing gene expression. Chromatin is closely related to gene expression. Therefore, its structure might be changed for adipocyte differentiation. Mouse 3T3-L1 preadipocytes have been used as a cell model to study molecular mechanisms of adipogenesis. Objective To examine changes of chromatin modification and expression of histone modifying enzymes during adipocyte differentiation. Methods Microscopic analysis and Oil Red O staining were performed to determine distinct phenotype of adipocyte differentiation. RT-PCR and Western blot analysis were used to examine expression levels of histone modifying enzymes during adipocyte differentiation. Histone modifications were examined by immunostaining analysis. Results Expression levels of P300 and cbp were increased during adipocyte differentiation. However, acetylation of histones was not quantitatively changed postdifferentiation of 3T3-L1 cells compared to that at pre-differentiation. RT-PCR and Western blot analyses showed that expression levels of hdac2 and hdac3 were increased during adipocyte differentiation, suggesting histone acetylation at chromatin level was homeostatically controlled by increased expression of both HATs and HDACs. Tri-methylation level of H3K9 (H3K9me3), but not that of H3K27me3, was significantly decreased during adipocyte differentiation. Decreased expression of setdb1 was consistent with reduced pattern of H3K9me3. Knock-down of setdb1 induced adipocyte differentiation. This suggests that setdb1 is a key chromatin modifier that modulates repressive chromatin. Conclusion These results suggest that there exist extensive mechanisms of chromatin modifications for homeostatic balance of chromatin acetylation and deconstruction of repressive chromatin during adipocyte differentiation.

      • KCI등재

        조직.기관의 분화와 유전자 발현의 조절, 최근의 진보

        Harn, Chang-Yawl 한국식물생명공학회 1997 식물생명공학회지 Vol.24 No.1

        Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because the

      • KCI등재

        Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro

        이주빈,이민구,Tao Lin,신현영,이재은,강정원,진동일 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.7

        Objective: The main goal of this study was to provide a morphological indicator that could be used to select high-quality oocytes of appropriate meiotic and developmental capabilities in pig. The higher quality of immature oocytes, the higher success rates of in vitro maturation (IVM) and in vitro fertilization (IVF). Thus, prior to the IVM culture, it is important to characterize oocytes morphologically and biochemically in order to assess their quality. Two of the largest indicators of oocyte quality are the presence of cumulus cells and status of chromatin. To investigate the effects of porcine oocyte chromatin configurations on the developmental capacity of blastocysts, we assessed oocyte chromatin status according to follicle size and measured the developmental potency of blastocysts. Methods: To sort by follicle size, we divided the oocytes into three groups (less than 1 mm, 1 to 3 mm, and more than 3 mm in diameter). To assess chromatin configuration, the oocytes were assessed for their stages (surrounded nucleolus [SN] germinal vesicle [GV], non-surrounded nucleolus [NSN] GV, GV breakdown, metaphase I [MI], pro-metaphase II [proMII], and metaphase II [MII]) at different maturation times (22, 44, and 66 h). To assess the development rate, oocytes of each follicle size were subjected to parthenogenetic activation for further development. Finally, GV oocytes were grouped by their chromatin configuration (SN, SN/NSN, and NSN) and their global transcriptional levels were measured. Results: SN GV oocytes were more suitable for IVF than NSN GV oocytes. Moreover, oocytes collected from the larger follicles had a greater distribution of SN GV oocytes and a higher developmental capacity during IVM, reaching MII more quickly and developing more often to blastocysts. Conclusion: Porcine oocytes with high-level meiotic and developmental capacity were identified by analyzing the relationship between follicle size and chromatin configuration. The porcine oocytes from large follicles had a significantly higher SN status in which the transcription level was low and could be better in the degree of meiotic progression and developmental capacity.

      • KCI등재

        FVE, an Arabidopsis Homologue of the Retinoblastoma-Associated Protein That Regulates Flowering Time and Cold Response, Binds to Chromatin as a Large Multiprotein Com-plex

        전진,김정묵 한국분자세포생물학회 2011 Molecules and cells Vol.32 No.3

        Some genetic studies indicate that plant homologues of proteins involved in chromatin modification and remode-ling in other organisms may regulate plant development. Previously, we described an Arabidopsis mutant with altered cold-responsive gene expression (acg1) displaying a late flowering phenotype, a null allele of fve. FVE is a homologue of the mammalian retinoblastoma-associated protein (RbAp), one component of a histone deacetylase (HDAC) complex involved in transcriptional repression, and has been shown to be involved in the deacetylation of the FLOWERING LOCUS C (FLC) chromatin encoding for a repressor of flowering. In an effort to gain insight into the biochemical functions of FVE, we overexpressed FVE tagged with the hemagglutinin (HA) and FLAG epitope at the N-terminus in acg1 mutants. The results of physiological and molecular analyses demonstrated that FVE over-expression in acg1 rescued the mutant phenotypes, in-cluding late flowering and alterations in floral pathway gene expression such as FLC, SUPPRESSOR OF OVER-EXPRESSION OF CO1 (SOC1), and FLOWERING LOCUS T (FT), and also super-induced cold-responsive reporter gene expression. The chromatin immunoprecipitation experiments revealed the amplification of specific DNA regions of FLC and COLD-REGULATED 15A (COR15A), indicating that FVE may bind to the FLC and COR15A chromatin. Gel-filtration chromatography and the immunoprecipitation of putative FVE complexes showed that FVE forms a protein complex of approximately 1.0 MDa. These results demonstrate that FVE may exist as a multiprotein complex, similar to the mammalian HDAC complex harboring RbAp, to regulate flowering time and cold response by associating with the FLC and COR chromatin.

      • KCI등재

        Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice

        Yoon, Jinmi,Cho, Lae-Hyeon,Lee, Sichul,Pasriga, Richa,Tun, Win,Yang, Jungil,Yoon, Hyeryung,Jeong, Hee Joong,Jeon, Jong-Seong,An, Gynheung Korean Society for Molecular and Cellular Biology 2019 Molecules and cells Vol.42 No.12

        Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.

      • KCI등재

        Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice

        Gynheung An,Jinmi Yoon,조래현,이시철,Richa Pasriga,윈툰,Jungil Yang,Hyeryung Yoon,Hee Joong Jeong,전종성 한국분자세포생물학회 2019 Molecules and cells Vol.42 No.12

        Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.

      • KCI등재

        Cryopreservation with Trehalose Reduced Sperm Chromatin Damage in Miniature Pig

        박철호,김성원,황유진,김대영 사단법인 한국동물생명공학회 2012 한국동물생명공학회지 Vol.27 No.2

        Miniature pig sperm cryopreservation is continually researched in biotechnology for breed conservation and reproduction. It is important to control the temperature at each stage of cryopreservation and cryoprotectant. It is also necessary to find the optimal cryoprotectant concentration and chemical elements of the extender. Recently, many studies have used various cryoprotectant materials, such as dimethyl sulphoxide (DMSO), ethylene glycol (EG), antifreeze protein (AFP), amides, and glycerol. Glycerol is a commonly used cryoprotectant. However, glycerol has critical cytotoxic properties, including osmotic pressure and it can cause irreversible damage to live cells. Therefore, We focused on membrane fluidity modifications can reduce cell damage from freezing and thawing procedures and evaluated on the positive effects of trehalose to the viability, chromatin integrity, and motility of boar sperm. Miniature pig sperm was separated from semen by washing with modified- Modena B (mMB) extender. After centrifugation, the pellet was diluted with the prepared first extender. This experiment was designed to compare the effects that sperm cryopreservation using two different extenders has on sperm chromatin. The control group used the glycerol only and it was compared with the glycerol and glycerol plus trehalose extender. Sperm viability and motility were evaluated using WST1assays and computer-assisted semen assays (CASA). Chromatin structure was examined using acridine orange staining. For the motility descriptors, trehalose caused a significant (p<0.01) increase in total motility (57.80 ± 4.60% in glycerol vs. 75.50 ± 6.14% in glycerol + trehalose) and progressive (51.20 ± 5.45% in glycerol vs. 70.74 ± 8.06% in glycerol +trehalose). A significant (p<0.05) increase in VAP (42.70 ± 5.73 μm/s vs. 59.65 ± 9.47 μm/s), VSL (23.06 ± 3.27μm/s vs. 34.60 ± 6.58μm/s), VCL (75.36 ± 11.36 μm/s vs. 99.55 ± 12.91μm/s), STR (54.4 ± 2.19% vs. 58.0 ± 1.63%), and LIN (32.2 ± 2.05% vs. 36.0 ± 2.45%) were also detected, respectively. The sperm DNA fragmentation index was 48.8%to glycerol only and 30.6% to glycerol plus trehalose. Trehalose added group showed higher percentages of sperm motility,stability of chromatin structure than glycerol only. In this study, we suggest that trehalose is effective in reducing freezing damage to miniature pig sperm and can reduce chromatin damage during cryopreservation.

      • KCI등재SCOPUSSCIE

        Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques

        Chaudhary, Narendra,Im, Jae-Kyeong,Nho, Si-Hyeong,Kim, Hajin Korean Society for Molecular and Cellular Biology 2021 Molecules and cells Vol.44 No.9

        The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.

      • KCI등재

        TM6, a Novel Nuclear Matrix Attachment Region, Enhances Its Flanking Gene Expression through Influencing Their Chromatin Structure

        Lusha Ji,Cheng-Chao Zheng,Rui Xu,Longtao Lu,Jiedao Zhang,Guodong Yang,Jinguang Huang,Changai Wu 한국분자세포생물학회 2013 Molecules and cells Vol.36 No.2

        Nuclear matrix attachment regions (MARs) regulate the higher-order organization of chromatin and affect the expression of their flanking genes. In this study, a tobacco MAR, TM6, was isolated and demonstrated to remarkably increase the expression of four different promoters that drive gusA gene and adjacent nptII gene. In turn, this expression enhanced the transformation frequency of transgenic tobacco. Deletion analysis of topoisomerase II-binding site, AT-rich element, and MAR recognition signature (MRS) showed that MRS has the highest contribution (61.7%) to the TM6 sequence-mediated transcription activation. Micrococcal nuclease (MNase) accessibility assay showed that 35S and NOS promoter regions with TM6 are more sensitive than those without TM6. The analysis also revealed that TM6 reduces promoter DNA methylation which can affect the gusA expression. In addition, two to-bacco chromatin-associated proteins, NtMBP1 and NtHMGB, isolated using a yeast one-hybrid system, specifically bound to the TM6II-1 region (761 bp to 870 bp) and to the MRS element in the TM6II-2 (934 bp to 1,021 bp) region, respectively. We thus suggested that TM6 mediated its chromatin opening and chromatin accessibility of its flanking promoters with consequent enhancement of transcription.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼