RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Three-Dimensional Simulation Study of the Improved On/Off Current Ratio in Silicon Nanowire Field-Effect Transistors

        구상모,최창용,조원주,김상식,Qiliang Li,John S. Suehle,Curt A. Richter,Eric M. Vogel 한국물리학회 2008 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.53 No.3

        In this paper, we report an approach based on three-dimensional numerical simulations for the investigation of the dependence of the on/off current ratio in silicon nanowire (SiNW) field-effect transistors (FETs) on the channel width. In order to investigate the transport behavior in devices with different channel geometries, we have performed detailed two-dimensional and three-dimensional simulations of SiNWFETs and control FETs with a fixed channel length L and thickness t but varying the channel width W from 5 nm and 5 μm. By evaluating the charge distributions and the current flowlines of both the two- and three-dimensional structures, we have shown that the increase in the `on state' conduction current in the SiNW channel is a dominant factor, which consequently results in more than a two order of magnitude improvement in the on/off current ratio. In this paper, we report an approach based on three-dimensional numerical simulations for the investigation of the dependence of the on/off current ratio in silicon nanowire (SiNW) field-effect transistors (FETs) on the channel width. In order to investigate the transport behavior in devices with different channel geometries, we have performed detailed two-dimensional and three-dimensional simulations of SiNWFETs and control FETs with a fixed channel length L and thickness t but varying the channel width W from 5 nm and 5 μm. By evaluating the charge distributions and the current flowlines of both the two- and three-dimensional structures, we have shown that the increase in the `on state' conduction current in the SiNW channel is a dominant factor, which consequently results in more than a two order of magnitude improvement in the on/off current ratio.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼