RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        서해 5도의 남북공동어로구역 설정을 위한기준과 과제

        김민배 법무부 2022 統一과 法律 Vol.- No.49

        The Five West Sea Islands refer to the sea areas related to Baengnyeong, Daecheong, Socheong, Yeonpyeong and Soyeonpyeong Island, which belong to Incheon, Republic of Korea (ROK). The Five West Sea Islands are the northernmost border against China and Democratic People’s Republic of Korea (DPRK). Whenever a crisis is repeated due to clashes between the ROK and DPRK, it is feared that it might turn into a place of local war. The task of creating a peaceful water area on the Five West Sea Islands and setting up ROK and DPRK joint fishing zone could not be concluded at the 2018 Inter-Korean Summit. This is a problem that has been dragged for 15 years since the inter-Korean summit in October 2007. However, the ROK and DPRK have agreed to establish a peaceful water area and a pilot joint fishing zone over the West Sea in the military field agreement to implement the Panmunjom Declaration. The ROK and DPRK agreed to set up a test joint fishing zone between Baengnyeong Island on the ROK side and Jangsan Cape on the DPRK side, but set a concrete boundary line between the peaceful water areas and the joint fishing zone. That was left as an issue for the ROK and DPRK Military Joint Committee. Despite the fact that the Five West Sea Islands are very important areas for the ROK and DPRK peace, the ROK and DPRK cannot agree because they are intertwined with historical characteristics, the ROK and DPRK interests, and the interests of neighboring countries. The ROK and DPRK have agreed to use the equal area criterion as the principle of water area setting in the process of setting the joint fishing water zone of ​​the five islands. However, the issue is the baseline for calculating the equal area criterion. The ROK proposed a joint fishing zone based on the Northern Limit Line (NLL). However, the DPRK claimed that the DPRK security boundary line, which is located south of the NLL in the waters between Yeonpyeong and Baengnyeong Island, was the baseline. The four areas proposed by ROK are designated based on the equal area criterion of ​​water in the ROK and DPRK, with NLL as the baseline. On the other hand, DPRK presents five areas based on the DPRK security boundary line according to the equal area criterion. The ROK and DPRK have been unable to solve problems such as NLL, the exclusive economic zone, DPRK's military boundary waters, and territorial waters on the Five West Sea Islands. For this reason, local battles such as the Daecheong Naval Battle, the Yeongpyeong Naval Battle, and the Yeonpyeong Island Artillery Battle are continuously occurring in the West Sea. Conflicts with the DPRK continued, and the border waters of the West Sea became conflict waters. As a result, the operating rights, movement rights, property rights of the islanders of the Five West Sea Islands are restricted due to the setting of operating limit lines, the setting of specific water areas, and restrictions on ship operations. The establishment of peaceful water areas and the ROK and DPRK joint fishing zone are also necessary to prevent repeated ROK and DPRK collisions and prevent illegal fishing of China. If so, what are the criteria and plans for setting maritime boundaries in the West Sea Peace Water Areas. In order to establish a standard for establishing a peaceful water area and the ROK and DPRK joint fishing area on the Five West Sea Islands, it is necessary to conduct a fact-finding survey and accumulate data from various aspects. In this study, I reviewed the historical characteristics and legal characteristics, the ROK and DPRK boundary demarcation criteria, and trends and cases of peaceful water areas and joint fishing zones of the Five West Sea Islands. Based on this, as the criteria of the baseline for setting the ROK and DPRK joint fishing zone, I emphasized the three-step approach, reflection of related circumstances, and spatial approaches. As a future task, I presented a cross-border integrated marine management method and the ... 서해 5도란 인천광역시 옹진군에 속하는 백령도·대청도·소청도·연평도·소연평도와 인근 해역을 말한다. 서해 5도는 중국과 북한에 맞선 최북단의 경계선이다. 남북한 충돌로 위기가 반복될 때마다 그곳이 국지전 장소로 변할까 우려한다. 서해 5도의 평화수역 조성과 남북공동어로구역 설정 과제가 남북정상회담의 주요 의제가 되는 이유이다. 그러나 2018년 남북정상회담에서도 결론을 내리지 못했다. 하지만 남북은 판문점 선언 이행을 위한 군사 분야 합의서에서 서해 해상에 평화수역과 시범적 공동어로구역을 설정하기로 했다. 남북은 시범 공동어로구역을 남측 백령도와 북측 장산곶 사이에 설정한다는 부분에는 동의하였지만, 평화수역과 공동어로구역의 구체적 경계선을 정하는 것은 남북군사공동위원회의 과제로 남겨 두었다. 서해 5도가 남북과 동아시아의 평화를 위해 매우 중요한 지역임에도 남북한이 경계선 등에 합의하지 못하는 것은 서해 5도의 역사적 특성, 남북의 이해관계, 그리고 국제정세와도 맞물려 있기 때문이다. 남북한은 서해 5도의 공동어로수역 설정 과정에서 등면적을 수역 설정의 원칙으로 정하는 데 합의하였다. 그러나 등면적을 산출하는 기준선이 쟁점이다. 남한은 NLL을 기준으로 공동어로구역을 제안하였다. 하지만 북한은 연평도와 백령도 사이 수역의 북방한계선보다 남쪽에 위치한 북한의 경비계선을 기준선으로 주장하였다. 남한이 제안한 4개의 구역은 NLL을 기준선으로 북한과 남한의 수역 면적이 같은 등면적에 기초한 지정안이다. 반면 북한은 이른바 경비계선을 기준으로 5개 구역을 등면적 원칙에 따라 제시하고 있다. 한편 서해 5도 해역의 경우 어디까지 대한민국이 실효적 지배를 하고 있는지 불분명하다. 남한은 서해 5도에 대한 실효적 지배와 1991년 체결한 남북기본합의서를 토대로 북방한계선 이남의 영유권을 주장하고 있다. 이에 반해 북한은 서해 5도와 그 연안 수역 일부만 남한 영토로 인정하고 있다. 북한이 주장하는 군사분계선은 우도에서 대각선으로 그어진 선이다. 서해 5도에는 NLL, 배타적 경제수역, 북한의 군사경계수역, 영해 사이의 쟁점들이 해소되지 않은 채 과제로 남아 있다. 이 때문에 서해에서 대청해전과 연평해전, 연평도 포격 사건 등의 국지전이 지속적으로 발생하고 있다. 북한과의 분쟁이 지속되면서 서해 접경수역은 분쟁 수역화되었고, 조업한계선 설정, 특정수역 설정, 선박 운항의 제약 등으로 주민들의 조업권, 이동권, 재산권 등이 제한되고 있다. 평화수역과 남북공동어로구역의 설정은 반복되는 남북한 충돌 방지와 중국의 불법 어업 방지를 위해서도 필요하다. 그렇다면 서해평화수역의 해상경계 설정 기준이나 방안 등은 무엇인가. 서해 5도의 평화수역과 공동어로구역의 설정을 위한 기준을 마련하기 위해서는 다양한 측면에서의 실태조사와 자료 축적이 필요하다. 본 연구에서는 서해 5도의 역사적 특성과 법적 성격, 서해 5도에 대한 남북한의 경계 획정 기준, 평화수역과 공동어로구역을 둘러싼 동향과 사례 등을 검토하고자 한다. 결론적으로 서해 5도의 경계 획정 방식으로 3단계 접근 방식, 관련 사정 반영, 그리고 공간적 접근 방식을 강조하였다. 향후 과제로서 초국경 통합 해양관리 방식과 공동관리기관의 설치 등을 제시하였다.

      • SCOPUSKCI등재

        Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

        Park, Moon-Jin,Oh, Hee-Jin Korea Institute of Ocean ScienceTechnology 2004 Ocean and Polar Research Vol.26 No.1

        In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.

      • 제주도 북서해역의 해수분포의 계절변화와 여름철의 황해난류

        방익찬,이재학,노홍길 濟州大學校海洋硏究所 1995 해양과환경연구소 연구논문집 Vol.19 No.-

        제주도 서방해역에서 1994년 2월 17∼18일, 6월 20∼22일, 9월 6∼15일에 관측한 CTD 자료와 제주대학교에서 고나측한 기종의 자료를 분석하여 해수분포와 해수순환의 계절변화를 알아보았다. 겨울철에는 대마난류수가 제주도 연안역을 중심으로 제주도 서방해역에서 제주해협으로 연결되어 분포하고 있으며 대마난류수가 제주도 서방해역을 지나 모두 제주해협으로 유출되고 있다. 황해낸수는 소흑산도 이남해역까지 분포하며 한반도 서해안을 따라 남하하는 구조를 보인다. 황해난류수는 대마난류수와 황해냉수 사이에 분포하며 소흑산도 서쪽해역을 지나 황해중앙부를 통해 황해로 유입되는 형태를 보인다. 여름철에는 표층에 대마난류수는 보이지 않으며, 31‰정도의 저염수가 나타나 양자강연안수의 영향이 6월에 이미 시작되었음을 보여 준다. 이러한 저염수는 남서해역에서 제주해협까지 나타나있다. 한편, 대흑산도 부근의 한반도 남서 연안에는 비교적 차고 높은 염분의 해수가 분포한다. 저층의 황해저층냉수는 황해중앙부를 통해 남하하며 황해난류수를 제주 근해로 압박하는 분포를 보인다. 자료분석 결과는 대흑산도 부근 해역의 해수기둥이 갖는 높은 염분은 이남의 고염수의 공급을 받아야만이 가능하며, 하천수 유입의 영향을 받지 않는 수심의 수온분포를 보면 황해난류수가 제주도 해역에서 대흑산도 해역으로 유입되고 있는 것이 보인다. 황해난류수가 서해안을 따라 황해로 유입되는 형태는 바람이 강할 때만 간헐적으로 나타나는 현상일 수도 있으나 순환구조의 가능성을 보여주었다는 점에서 매우 귀중한 결과이다. 이러한 결과는 Pang et al.(1992)에 의해 제시된 겨울철에 연안을 따라 남하하고 황해의 깊은 골을 따라서는 북상하며, 여름철에 연안을 따라 북상하고 황해의 깊은골을 따라서는 남하하는 계절순환의 구조를 뒷받침해 준다. With CTD data observed on the north western sea of Cheju Island in Feb. 17∼18, Jun. 20∼22, Sep. 6∼15, 1994, and CNU(Cheju National University) data observed previously, the seasonal variation of water mass distribution and circulation are studied. In winter, Tsushima Warm Water(TWW) is distributed near Cheju-do from the western sea of Cheju-do to the Cheju Strait, and totally flows to the Cheju Strait. Yellow Sea Cold Water(YSCW) is distributed over the western coast of Korean Peninsula down to the southern sea of Soheuksan-do, and flows southward along the western coast of Korean Peninsula. Yellow Sea Warm Water(TSWW) is distributed between TWW and YSCW, and flows into the central Yellow Sea through the western sea of Soheuksan-do. In summer, the upper and lower layers show different distributions. In uper layer, TWW disappears and less saline water of down to 31‰appears, which shows that the influence of Yangtze Coastal Water already begins in June. The low salinity water is distributed from the western sea off Cheju-do to the Cheju Strait. On the southwestern coast of Korean Peninsula near Taeheuksan-do, relatively cold and saline water is distributed. In the lower layer, Yellow Sea Bottom Cold Water(YSBCW) southeasterly expands from the central Yellow Sea and pushs YSWW to Cheju-do. The result of data analysis shows that the homogeneously saline water column in the cold water area is possible only by the northward supply of southern saline water. According to the temperature distribution of deep layer, which is less influenced by river runoff, YSWW flows northward along the western coast of Korean Peninsula from the adjacent sea of Cheju-do. YSWW's influx along the western coast of Korean Peninsula in summer might appear intermittently, however, the possibility itself is important at present. The result agrees with the seasonal circulation structure presented by Pang et al.(1992) : in winter, southward folw along the coast and southward flow along the central Yellow Sea.

      • KCI등재

        Intrusion of Low-Salinity Water into the Yellow Sea Interior in 2012

        오경희,이준호,이석,방익찬 한국해양과학기술원 2014 Ocean science journal Vol.49 No.4

        Abnormally low-salinity water was detected in the surface layer of the central region of the Yellow Sea in August 2012. The presence of such low-salinity water in the Yellow Sea interior has never been reported previously. To understand the origin of this low-salinity water, oceanographic and wind data were analyzed, and the circulation of the surface layer was also examined in the Yellow and East China Seas using a numerical ocean model. The results confirmed that typhoons caused the low-salinity water. Two consecutive typhoons passed from east to west across the East China Sea, around the Changjiang Bank in early August 2012. Strong easterly and southeasterly winds created by the typhoons in the Yellow and East China Seas drove the low-salinity water to the north along the coast of China and northeastward toward the central region of the Yellow Sea, respectively. Usually, the northward drifting of Changjiang Diluted Water along the coast of China ends around the Jiangsu coast, where the drifting is blocked and is turned by the offshore Eulerian residual current. Therefore, the Changjiang Diluted Water does not intrude more into the Yellow Sea interior. However, in 2012, the low-salinity water drifted up to the Shandong Peninsula along the coast of China, and formed massive low-salinity water in the Yellow Sea interior combining with the other low-salinity water extended toward the central region of the Yellow Sea directly from the Changjiang Bank. Thus, the typhoons play a key role in the appearance of abnormally low-salinity water in the Yellow Sea interior and it means that the Yellow Sea ecosystem could be significantly influenced by the Changjiang Diluted Water.

      • KCI등재

        기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망

        이호준,남성현 한국해양학회 2023 바다 Vol.28 No.1

        The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea’s deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea’s meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW. 동해는 전 세계적으로 가장 빠른 수준의 온난화를 경험하는 해역 중 하나로서, 기후변화에 민감하게 반응할 뿐 아니라 대양에 비해 월등히 짧은 순환 주기를 가지고 있기 때문에 미래의 대양 환경 변화에도 중요한 시사점을 주는 것으로 알려져 있다. 그러나 동해 심층 해수의 특성과 순환의 변화 과정에 대한 연구는 동해 전역의 심층을 정밀하게 조사하기 위한 국제협력 프로그램이 자리잡고, 측정 장비의 분해능을 포함하는 관측기술과 수치모델 모의 능력이 크게 향상된 최근(1990년대 이후)에서야 본격화되고 있다. 여기서는 동해 심층 해수의 물리적 특성과 순환의 변화 과정에 대한 그간의 연구 결과를 요약하고, 향후 남은 과제를 제시하고자 한다. 동해는 내부에서 자체적으로 심층 해수가 생성되며 대양과 분리된 독특한 심층 순환 구조를 가진다. 동해의 수백 m 수심 아래에는 수온이 낮고(<1℃) 염분이 거의 일정(34.0-34.1)한 해수가 분포하기 때문에 오랜 기간 이 해수를 일본해고유수(동해고유수)로 명명된 단일 해수로 여겨 왔다. 그러나 1990년대 이후 정밀한 관측이 이루어지며, 동해 심층을 채우고 있는 해수가 적어도 3개의 서로 다른 물리적 특성을 가진 해수(중앙수, 심층수, 저층수)로 구성됨이 밝혀졌다. 이들 3개 해수의 물리적 특성과 해수 사이의 경계 수심은 항상 일정한 것이 아니라, 지난 수십 년 동안 유의한 수준의 변화를 겪어왔다. 동해 북부 해역의 대마난류 재순환, 해양-대기 열과 담수의 교환량, 해빙 형성에 영향을 받는 대류(심층사면대류 및 심층외양대류) 과정에 따라 심층 해수 생성에 뚜렷한 차이가 발생했기 때문이다. 생성된 심층 해수는 수심이 얕은 곳을 오른쪽에 두고 일본 분지에서부터 반시계 방향으로 울릉 분지, 야마토 분지를 차례로 거쳐 다시 일본 분지로 수송되며, 이 수평적인 심층 순환도 변화를 겪어 왔다. 수평적인 심층 순환은 동시에 남북 및 연직 방향의 순환(자오면 순환) 경로와 강도의 변화를 동반한다. 동해는 수천 년 규모의 순환 주기를 가지는 대양에 비해 훨씬 짧은 수백 년 혹은 그 이내의 순환 시간 규모를 가지기 때문에 동해 심층 해수의 물리적 특성과 자오면 순환의 급격한 변화를 더 뚜렷하게 볼 수 있을 것으로 기대 가능하다. 심층 및 자오면 순환 사이의 연계성, 대양과 동해의 유출입 해수 수송을 포함하는 동해 상층 순환과 심층 순환 사이의 연계성은 아직까지 잘 밝혀지지 않았다. 동해 심층 해수 수송의 경로와 강도를 지배하는 다양한 과정들에 대한 후속 연구들이 요구된다.

      • 남·서해의 계절 순환과 여름철 난류수의 서해 유입

        현경훈,방익찬,노홍길 제주대학교 해양연구소 1996 해양자원연구소연구보고 Vol.20 No.-

        In order to study on the seasonal circulation in the South and West Seas of Korean Peninsula and the inflow of warm waters into the West Sea(eastern Yellow Sea) in summer, water mass analysis is used with temperature and salinity data observed by National Fisheries Research & Development Agency du-ring 1970~1990. In the West Sea, warm waters are majorly mixed by the mixing rate of 40~60% in summer, while cold waters are dominant in winter. In the central region of the Yellow Sea. warm waters are distributed linked with the northwestern sea of Cheju Islands in winter but cold waters are distribu-ted in the lower layer in summer. The reverse of water mass distributions in winter and summer could be explained only by the seasonal circulations. In winter, warm waters are intruded to the central region and cold waters flow southward along the west coast of Korea. In summer, warm waters flow northward along the west coast of Korea and cold waters flow southward in the central region. Therefore, Yellow Sea Warm Waters can be defined as the northward flow of warm waters toward the central region of the Yellow Sea in winter and along the west coast of Korea in summer.

      • Water and Salt Budgets for the Yellow Sea

        Lee, Jae-Hak,An, Byoung-Woong,Bang, Inkweon,Hong, Gi-Hoon The Korean Society of Oceanography 2002 Journal of the Korean Society of Oceanography Vol.37 No.3

        Water and salt budgets in the Yellow Sea and Bohai are analyzed based on the historical data and CTD data collected recently using box models. The amounts of volume transport and of water exchange across the boundary between the Yellow and East China Seas are estimated to be 2,330-2,840 $\textrm{km}^3$/yr and 109-133 $\textrm{km}^3$/yr, respectively, from the one-layer box model. Corresponding water residence time is 5-6 years. In the Bohai, water residence time is twice as long as that in the Yellow Sea, suggesting that the Yellow Sea and Bohai cannot be considered as a single system in the view of water and salt budgets. The results indicate that water and salt budgets in the Yellow Sea depend almost only on the water exchange between the Yellow and East China Seas. The computation with the coupled two-layer model shows that water residence time is slightly decreased to 4-5 years for the Yellow Sea. In order to reduce uncertainties for the budgeting results the amount of the discharge from the Changjiang that enters into the Yellow Sea, the vertical advection and vertical mixing fluxes across the layer interface have to be quantified. The decreasing trend of the annual Yellow River outflow is likely to result that water residence time is much longer than the current state, especially for the Bohai. The completion of the Three Gorges dam on the Changjiang may be change the water and salt budgets in the Yellow Sea. It is expected that cutting back the discharge from the Changjiang by 10% through the dam would increase water residence time by about 10%.

      • KCI등재후보

        동중국해 북부해역의 겨울철 수계와 전선구조

        손영태,이상호,이재철,김정창 한국해양학회 2003 바다 Vol.8 No.3

        During the winter in February 1998, January and April 1999, interdisciplinary research was conducted in a large area including the South Sea of Korea and northern East China Sea to examine distribution and structure. Water masses identified from the observed data are Warm Water originated from Tsushima Warm Current, Yellow Sea Cold Water (Northern or Central Cold Water) and Korean Southern Sea Cold Water. In the southern Yellow Sea, Warm Water originated from Tsushima Warm Current, flowing into the Cheju Strait after turning around the western Cheju Island, makes a front of '┍' shape, which is bounded by the Yellow Sea Central Cold Water in the southern part of Daeheuksan Island and by the Yellow Sea Northern Cold Water in the eastern part of the Yangtze Bank. This front changes its corner shape and position with strength of the warm water extension toward northwestern Yellow Sea. The position and structure of the fronts off the southwestern tip of the Korean peninsular and near the Yangtze Bank varies with observation period. In the front in the South Sea of Korea, cold coastal water which if formed independently due to local cooling, ,sinks along the sloping bottom. We explained the processes of variations in the distribution and structure of these winter fronts in terms of up-wind and down-wind flow by the seasonal monsoon, heat budget through the sea surface and density difference across the fronts. 겨울철인 1998년 2월과 1999년 1월, 4월에 남해와 동중국해 북부해역에서 형성되는 전선의 분포와 구조를 파악하기 위하여 광역의 종합해양관측을 수행하였다. 관측해역에서 구분된 수계들은 대마난류기원 고온수, 황해냉수(북부냉수 혹은 중앙냉수) 그리고 남해저온수로 분류된다. 황해남부 해역에서는 제주도 서쪽을 우회하여 제주해협으로 유입하는 대마난류기원 고온수가 '┍'자 형태의 기본적 전선을 이루며 대흑산도 남쪽에 황해중앙냉수와 그리고 양자천퇴 동부에서 황해북부냉수와 만나고 있다. 이 전선은 고온수가 황해 북서부로 확장하는 세기에 의해 전선 모서리 형태와 위치가 달라진다. 양자천퇴 부근과 한반도 남서단 외측에서의 전선위치와 구조도 관측시기에 따라 변화한다 남해 전선에서는 연안 저온수가 국지적 냉각에 의해 독립적으로 형성된 수계로서 해저사면을 따라 침강한다. 이러한 겨울철 전선분포의 변화와 전선구조가 변화되는 과정은 탁월풍에 의한 순풍류 및 역풍류, 해수면을 통한 열수지 그리고 전선사이의 밀도차이에 의한 것으로 설명되었다.

      • KCI등재

        해양심층수 관련 국내 특허출원 동향

        정갑택 ( Kap Taeck Chung ),이상현 ( Sang Hyun Lee ) 韓國食品營養學會 2009 韓國食品營養學會誌 Vol.22 No.2

        Deep sea water exists at depths of over 200m under the sea. As no sunlight reaches it, photosynthesis does not take place within it, and it contains no organic matter. In addition, its temperature is maintained at a stable low level throughout the year, so it does not get mixed with the sea water on the surface. It contains a large amount of nutritious salts, whose cleanness is maintained. It is a marine resource that has matured for a long period of time. Research into deep sea water, which started in the 1970s, has been made around the whole world, including the USA and Japan. In Korea, research has been active in this area since 2000. As there has been a good amount of research into industrial applications for deep sea water, since 1993, patents for the relevant technologies have been applied. This paper intends to provide a resource to researchers of deep sea water, by summarizing of all domestic deep sea water-related patents applied with Korean Intellectual Property Office from 1993 to 2008. This research was conducted using a computer and KIPRIS Database owned by the Korea Institute of Patent Information. `Deep sea water` was used as the search keyword. A total of 222 Korean patents relating to deep sea water have been registered on the basis of IPC. Of these, 126 patents relate to the manufacturing and the treatment of foods, foodstuffs, or non-alcoholic beverages(A23L), while 50 patents relate to the production for medical, dental, or cosmetic purposes(A61K). 38 patents relate to water purification, treatment of wastewater, sewage and sludge(C02F), while 8 patents relate to fishery and farming(A01K). In summary, it was found that studies for the practical use of deep sea water have been conducted in relation to the manufacturing and the treatment of foods, foodstuffs, beverages, and cosmetics.

      • Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

        Kim, Chang-S.,Lim, Hak-Soo,Yoon, Jong-Joo,Chu, Peter-C. The Korean Society of Oceanography 2004 Journal of the Korean Society of Oceanography Vol.39 No.1

        The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼