RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Production of Methanol from Methane by Encapsulated Methylosinus sporium

        ( Sanjay K. S. Patel ),( Jae-hoon Jeong ),( Sanjeet Mehariya ),( Sachin V. Otari ),( Bharat Madan ),( Jung Rim Haw ),( Jung-kul Lee ),( Liaoyuan Zhang ),( In-won Kim ) 한국미생물 · 생명공학회 2016 Journal of microbiology and biotechnology Vol.26 No.12

        Massive reserves of methane (CH<sub>4</sub>) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of CH4 to methanol. The present study demonstrates the bioconversion of CH<sub>4</sub> to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, 30oC, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of CH<sub>4</sub> as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

      • Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization

        Patel, S.K.S.,Selvaraj, C.,Mardina, P.,Jeong, J.H.,Kalia, V.C.,Kang, Y.C.,Lee, J.K. Applied Science Publishers 2016 APPLIED ENERGY Vol.171 No.-

        <P>Both methane (CH4) and carbon dioxide (CO2) are major greenhouse gases (GHGs); hence, effective processes are required for their conversion into useful products. CH4 is used by a few groups of methanotrophs to produce methanol. However, to achieve economical and sustainable CH4 reduction strategies, additional strains are needed that can exploit natural CH4 feed stocks. In this study, we evaluated methanol production by Methylosinus sporium from CH4 and synthetic gas. The optimum pH, temperature, incubation period, substrate, reaction volume to headspace ratio, and phosphate buffer concentration were determined to be 6.8, 30 C, 24 h, 50% CH4, 1:5, and 100 mM (with 20 mM MgC12 [a methanol dehydrogenase inhibitor]), respectively. Optimization of the production conditions and process parameters significantly improved methanol production from 0.86 mM to 5.80 mM. Covalent immobilization of M. sporium on Chitosan significantly improved the stability and reusability for up to 6 cycles of reuse under batch culture conditions. The immobilized cells utilized a synthetic gas mixture containing CH4, CO2, and hydrogen (at a ratio of 6:3:1) more efficiently than free cells, with a maximum methanol production of 6.12 mM. This is the first report of high methanol production by M. sporium covalently immobilized on a solid support from a synthetic gas mixture. Utilization of cost-effective feedstocks derived from natural resources will be an economical and environmentally friendly way to reduce the harmful effects of GHGs. (C) 2016 Elsevier Ltd. All rights reserved.</P>

      • SCISCIESCOPUS

        Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas

        Patel, S.K.S.,Mardina, P.,Kim, D.,Kim, S.Y.,Kalia, V.C.,Kim, I.W.,Lee, J.K. Elsevier Applied Science 2016 Bioresource technology Vol.218 No.-

        Raw biogas can be an alternative feedstock to pure methane (CH<SUB>4</SUB>) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH<SUB>4</SUB>, carbon dioxide (CO<SUB>2</SUB>), and hydrogen (H<SUB>2</SUB>). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH<SUB>4</SUB>:CO<SUB>2</SUB>, CH<SUB>4</SUB>:H<SUB>2</SUB>, CH<SUB>4</SUB>:CO<SUB>2</SUB>:H<SUB>2</SUB>, CO<SUB>2</SUB>, and CO<SUB>2</SUB>:H<SUB>2</SUB>, respectively. Supplementation of H<SUB>2</SUB> into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H<SUB>2</SUB>S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs.

      • KCI등재

        메탄올탈수소효소 저해시 메탄산화에 의한 메탄올 전환생성 특성

        유연선(Yeon Sun Yoo),한지선(Ji Sun Han),안창민(Chang Min Ahn),민동희(Dong Hee Min),모우종(Woo Jong Mo),윤순욱(Soon Uk Yoon),이종규(Jong Gyu Lee),이종연(Jong Yeon Lee),김창균(Chang Gyun Kim) 大韓環境工學會 2011 대한환경공학회지 Vol.33 No.9

        본 연구에서는 메탄의 생물학적 메탄올 전환에 관한 연구를 수행하였다. 바이오가스 중의 메탄은 메탄산화균의 methane monooxygenase (MMO)의 생물학적 촉매반응에 의해 산화되었으며, 인산염, NaCl, NH₄Cl, EDTA와 같은 methanol dehydrogenase(MDH)의 활성 저해제를 이용하여 MDH의 활성도를 저해함으로써 메탄올의 전환이 이루어졌다. 메탄산화균은 35℃, pH 7, 인공 바이오가스(CH₄ 50%, CO₂ 50%) / Air의 부피비가 0.4인 조건에서 메탄 산화 정도가 0.56 mmol로 최대로 나타났다. 인산염40 mM, NaCl 50 mM, NH₄Cl 40 mM, EDTA 150 μm 이하일 때 저해제의 종류에 상관없이 메탄 산화율은 80% 이상을 달성하였다. 한편, 인산염 40 mM, NaCl 100 mM, NH₄Cl 40 mM, EDTA 50 μm 주입 시 각각 1.30, 0.67, 0.74, 1.30 mmol의 메탄이 산화되는 동시에 각각 0.71, 0.60, 0.66, 0.66 mmol의 메탄올이 최대로 생성되었다. 이때의 메탄올 전환율은 각각 54.7, 89.9, 89.6 및 47.8%였으며 최대 메탄올 생성 속도는 7.4 μmol/mg·h였다. 이로부터 대상 저해제로 MDH 활성도를 일반적으로 35% 저해 시에메탄올 생산량이 최대인 89.9%까지 나타남을 알 수 있었다. This study was conducted to biologically convert methane into methanol. Methane contained in biogas was bio-catalytically oxidized by methane monooxygenase (MMO) of methanotrophs, while methanol conversion was observed by inhibiting methanol dehydrogenase (MDH) using MDH activity inhibitors such as phosphate, NaCl, NH₄Cl, and EDTA. The degree of methane oxidation by methanotrophs was the most highly accomplished as 0.56 mmol for the condition at 35℃ and pH 7 under 0.4 (v/v%) of biogas (CH₄ 50%, CO₂ 50%) / Air ratio. By the inhibition of 40 mM of phosphate, 50 mM of NaCl, 40 mM of NH₄Cl and 150 μm of EDTA, methane oxidation rate could achieve more than 80% regardless of type of inhibitors. In the meantime, addition of 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH₄Cl and 50 μm of EDTA each led to generating the highest amount of methanol, i.e, 0.71, 0.60, 0.66, and 0.66 mmol when 1.3, 0.67, 0.74, and 1.3 mmol of methane was each concurrently consumed. At that time, methanol conversion rate was 54.7, 89.9, 89.6, and 47.8% respectively, and maximum methanol production rate was 7.4 μmol/mg·h. From this, it was decided that the methanol production could be maximized as 89.9% when MDH activity was specifically inhibited into the typical level of 35% for the inhibitor of concern.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼