RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Tuning the microstructure and rheological properties of MXene-polymer composite ink by interaction control

        Kim Yeeun,Kim Eunji,Kim Dohoon,Ahn Chi Won,Kim Byoung Soo,안경현,Lee Yonghee,박준동 한국유변학회 2023 Korea-Australia rheology journal Vol.35 No.2

        Since the discovery of MXene, which has been attracting attention as an alluring two-dimensional material with a distinct structure and mechanical and electrical capabilities, numerous attempts have been made to combine MXene with polymer additives to enhance and compensate for MXene’s inherent weakness. In this work, the rheological properties of MXene ( Ti3C2Tx)-polymer composite inks of three different polymers with various interaction with MXene particles are examined. Polyethylene glycol (PEG), which is known to physically adsorb on the surface of MXene, improved MXene dispersion while enhancing the viscoelastic property of ink. MXene ink containing polyethylenimine (PEI) was destabilized forming a viscoelastic network structure as PEI of strong positive charge adsorbed on the MXene surface to neutralize negative charge and diminish electrostatic repulsion. In the case of MXene-polyacrylic acid (PAA) composite ink, the formation of hydrogen bonds between MXene and PAA resulted in a dense network structure with high viscoelasticity. In terms of rheological property sensitivity to concentration, MXene ink without polymer additives exhibited power-law behavior with the largest exponent, whereas MXene-polymer composite inks indicated moderate sensitivity. Our findings will aid in the design of MXene-based composites with optimum rheological properties for specific processes such as 3D printing and coating.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼