RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        다기능 복합 포장용 섬유보강 콘크리트 기층 재료의 역학적 특성평가

        박철우,장영재,박영환,정우태,최성용,유평준 한국도로학회 2012 한국도로학회논문집 Vol.14 No.5

        PURPOSES: This study is to investigate the mechanical performance of the fiber reinforced lean concrete with respect to different types of fibers. METHODS: Increased vehicle weight and other causes from the exposed conditions have accelerated the deteriorations of road pavement. A new multi-functional composite pavement system is being developed recently in order to extend service life and upgrade the pavement. A variety of tests were conducted before and after hardening of the concrete. RESULTS: From the test results, it was found that the use of different types of fibers did not affect the compressive strength development. This might be due to the inherent property of the lean concrete. When steel fibers were used relatively greater flexural strength and flexural fracture toughness were developed. Also addition of fly ash by replacing a part of Portland cement the fracture toughness was slightly increased. CONCLUSIONS : It has been known that the addition of fibers and use of mineral admixture can be positively considered in the development of multi-functional composite pavement system as its required mechanical performance is obtained. PURPOSES: This study is to investigate the mechanical performance of the fiber reinforced lean concrete with respect to different types of fibers. METHODS: Increased vehicle weight and other causes from the exposed conditions have accelerated the deteriorations of road pavement. A new multi-functional composite pavement system is being developed recently in order to extend service life and upgrade the pavement. A variety of tests were conducted before and after hardening of the concrete. RESULTS: From the test results, it was found that the use of different types of fibers did not affect the compressive strength development. This might be due to the inherent property of the lean concrete. When steel fibers were used relatively greater flexural strength and flexural fracture toughness were developed. Also addition of fly ash by replacing a part of Portland cement the fracture toughness was slightly increased. CONCLUSIONS : It has been known that the addition of fibers and use of mineral admixture can be positively considered in the development of multi-functional composite pavement system as its required mechanical performance is obtained.

      • KCI등재

        현장파쇄 순환골재의 동상방지층 및 빈배합 콘크리트층에 대한 적용성 평가

        김진철(Kim, Jin-Cheol),김홍삼(Kim, Hong-Sam) 한국건설순환자원학회 2005 한국건설순환자원학회지 Vol.1 No.1

        고속도로 건설 및 유지관리 과정에서 발생되는 폐콘크리트의 재활용을 위하여 현장파쇄에 의한 순환골재의 생산 및 도로용 재료의 시방기준 준수여부를 평가하여 최적의 파쇄방법을 선정하였으며, 최적 파쇄방법에 의해 생산된 순환골재를 이용한 시험시공을 실시하였다. 현장파쇄 순환골재의 입도시험결과 임팩트 크러셔 또는 죠, 콘크러셔 조합형이 소요입도에 적합한 순환골재를 생산할 수 있었다. 생산된 순환골재를 동상방지층에 적용할 경우 함수비 변동에 의한 건조밀도 변화가 작으므로 천연골재에 비하여 관리가 쉬운 장점이 있었으며, 빈배합콘크리트 기층의 경우 재령 7일 압축강도는 순환골재의 종류에 관계없이 10MPa를 상회하므로 현장적용에는 큰 문제가 없음을 알 수 있었다. 시험시공 적용 결과 동상방지층의 경우 순환 굵은골재, 스크리닝스 및 모래를 소요입도로 혼합하였을 때 양호한 지지력을 나타내었으며, 순환골재 빈배합 콘크리트의 강도는 천연쇄석에 비하여 71~85% 강도를 나타내었으나 배합강도 5.8MPa를 크게 상회하였으므로 현장적용에는 문제없음을 확인하였다. In other to recycle the waste concrete produced in stiu on the construction and management in highway, the recycled aggregates were experimentally examined in a practical application for anti-freezing layer and lean concrete base course. From the results, the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-freezing layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the 7days compressive strengths of lean concrete were above the 10MPa regardless of the crushing types. From the result of testing the bearing capacity of anti-freezing layer, it was found that when the recycled aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2-20mm sieve increased by 5~13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. Although the compressive strength of lean concrete was 71~85% of the natural coarse aggregate, the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, 5.8MPa.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼