RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        DYNAMIC MODELING OF THE ELECTRO-MECHANICAL CONFIGURATION OF THE TOYOTA HYBRID SYSTEM SERIES/PARALLEL POWER TRAIN

        C. MANSOUR,D. CLODIC 한국자동차공학회 2012 International journal of automotive technology Vol.13 No.1

        The hybridization of the conventional thermal vehicles nowadays constitutes a paramount importance for car manufacturers, facing the challenge of minimizing the consumption of the road transport. Although hybrid power train technologies did not converge towards a single solution, series/parallel power trains with power-split electromechanical transmissions prove to be the most promising hybrid technology. In fact, these power trains show maximum power train overall efficiency and maximum fuel reduction in almost all driving conditions compared to the conventional and other hybrid power trains. This paper addresses the model and design of the electro-mechanical configuration of one of the most effective HEV power trains: case study of the 2nd generation Prius. It presents the simulation work of the overall operation of the Toyota Hybrid System (THS-II) of the Prius, and explores not only its power-split eCVT innovative transmission system but also its overall supervision controller for energy management. The kinematic and dynamic behaviors of the THS-II power train are explained based on the power-split aspect of its transmission through a planetary gear train. Then, the possible regular driving functionalities that result from its eCVT operation and the energy flow within its power train are outlined. A feedforward dynamic model of the studied power train is next proposed, supervised by a rule-based engineering intuition controller. The energy consumption of the THS-II proposed model has been validated by comparing simulation results to published results on European, American and Japanese regulatory driving cycles.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼