RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계

        우용제 ( Yongje Woo ),박재홍 ( Jaehong Park ),강민구 ( Mingoo Kang ),권기원 ( Kiwon Kwon ) 한국인터넷정보학회 2015 인터넷정보학회논문지 Vol.16 No.5

        에너지 저장장치(Energy Storage System)은 전력 수요가 적을 때 전력을 저장해 두었다가 수요가 발생하거나 비상시 저장된 전력을 사용함으로 전기 에너지를 저장하여 필요할 때 사용 가능함으로써 에너지 이용 효율 향상, 전력공급 시스템 안정화 및 신재생 에너지 활용도 향상 효과를 가지는 시스템이다. 최근 세계적으로 에너지의 효율적인 소비에 대한 관심이 증대되면서 전력의 안정적인 공급을 원하는 수요자와 전력 수요 평준화를 원하는 공급자의 요구를 충족시켜줄 수 있는 에너지 저장장치의 필요성이 증대되고 있다. 현재 에너지 저장장치를 구성하는 Power Conditioning System(PCS), Battery Management System(BMS), 배터리 셀은 제조사별로 상이한 규격을 가진다. 이로 인해 각 핵심 부품 간 인터페이스가 규격화되어 있지 않아, 에너지 저장장치의 구성 및 운영에 난점으로 작용하고 있다. 본 논문에서는 제조사별로 상이한 특징을 가지는 부품들의 설정과 효율적 운영에 필요한 정보를 수용하여 에너지 저장장치를 구성할 수 있는 XML 기반의 에너지 시스템 전용 프로파일 시스템의 설계와 분석방안을 제안한다. 제조사별 PCS, BMS, 배터리 셀과 그 외의 주변 기기들의 설정 정보 및 운영 정보를 분석하여 프로파일 규격을 정의하고, 에너지 저장장치에 적용할 수 있는 프로파일 어댑터 소프트웨어를 설계 및 구현한다. 프로파일 어댑터를 통해 생성된 프로파일은 설정 프로파일과 운영 프로파일로 구성되며, 추후 확장성을 고려하여 표준 XML의 규격을 따른다. 구현된 프로파일 시스템의 검증은 에너지 저장장치 시스템에 적용되어 기본적인 충·방전 동작을 통해 정상 동작 결과를 제안한다. The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers` demand for stable power supply and the suppliers` demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

      • KCI등재

        Energy Geo-Storage − Analysis and Geomechanical Implications

        Cesar Pasten,J. Carlos Santamarina 대한토목학회 2011 KSCE JOURNAL OF CIVIL ENGINEERING Vol.15 No.4

        The increasing energy demand, the mismatch between generation and load, and the growing use of renewable energy accentuate the need for energy storage. In this context, energy geo-storage provides various alternatives, the use of which depends on the quality of surplus energy. In terms of power and energy capacity, large mechanical energy storage systems such as Compressed Air Energy Storage (CAES) and Pumped Hydro Storage (PHS) are cost-effective and suitable for centralized power generation. In contrast,sensible and latent heat storage are appropriate for distributed applications when excess heat is involved. Energy density estimations highlight the advantages of compressed air over elevated water, and latent heat over sensible heat storage. From a geotechnical standpoint, the operation of geo-storage systems exerts complex effective stress, temperature, wet-dry, and freeze-thaw cycles. Although these excitations may not cause monotonic failure, they lead to ratcheting or shakedown behavior, both of which must be carefully analyzed to ensure the proper long-term cyclic response of energy geo-storage systems.

      • KCI등재

        유럽연합의 에너지저장시스템(Energy storage system) 정책 발전에 관한 연구:독일의 주택용 태양광 발전(Photovoltaic) 배터리 에너지 저장 시스템

        정혁 한국외국어대학교 EU연구소 2024 EU연구 Vol.- No.72

        국제 기후변화 정치 영역에서 신재생에너지원 발전 전력의 사용 증대를 통한 온실가스 감축이라는 정책 방향이 정립되면서 신재생에너지원 발전 전력의 효율적인 사용을 위한 에너지 저장 시스템의 역할이 강조되고 있다. 유럽연합 회원국들 중 독일은 에너지의 외부 의존도가 크고 신재생에너지원 발전 전력의 증대를 도모하는 국가 에너지 수급 계획으로 에너지 저장 시스템의 확대에 효과적인 지원정책을 시행하고 있다. 독일의 주택용 태양광 발전 배터리 에너지 저장 시스템의 기하급수적인 수적 확대 기저에는 독일 정부의 그 시스템 설치와 발전 용량에 대한 세금 감면, 보조금, 독일 재건은행의 저리 융자 지원 등이라는 재정적 지원정책 등이 시행되고 있다. 그 발전의 가속화를 위해서는 배터리 에너지 저장 시스템에 대한 명확한 법적 정의 부재 해결을 위한 독일 에너지 산업법 내 그 법적 정의 마련, 에너지 저장 시스템 사용 시 부과되는 과세와 세금 등의 이중과세를 피하는 방향으로의 독일의 에너지 산업법 개정, 그리고 대규모 저장 용량 에너지 저장 시스템에만 적용되는 전력망 사용료 면제의 주택용 태양광 발전 배터리 에너지 저장 시스템 분야로의 적용 등이 정책상의 과제로 논의될 수 있다. 한국 정부도 독일이 시행하고 있는 자가 공급 전력이 자체 수요로 사용될 경우 적용하고 있는 소비세와 과세 면제를 한국 내 에너지 저장 장치의 용도와는 상관없이 적용하는 것이 주택용 태양광 발전 배터리 에너지 저장 시스템을 포함한 에너지 저장 장치의 효과적인 수적 확대를 위해서는 필요한 정책 방향으로 사료된다. As reduction in emissions of greenhouse gas through expansion of renewable energy use has been set in place as the primary policy direction in international climate change policy area, the role of energy storage system for efficient use of renewable energy is being stressed. Germany, a member state of the European Union that has high energy dependency on imported energy and has been promoting the use of renewable energy for its energy supply and demand plan, is currently implementing effective support policies for expansion of energy storage system. Beneath the exponential growth in number of the German residential photovoltaic energy storage systems is the implementation of supporting policies of tax reductions, subsidies on the generated power and deployments of the system at the level of the federal government and low-interest loan from the Kreditanstalt für Wiederaufbau. With regard to the policy challenges and the approaches to them, there should be setting legal definition of battery energy storage system in the German Energy Industrial Act, amending the German Energy Industrial Act in a direction that there should not be double levies and taxes imposed upon the use of the system, and exemption of grid use charge for residential PV energy storage system that now applies only to the massive energy storage systems. The Korean Government needs to exempt the consumption tax and levies put on when the self-supplied power is used as the ‘behind the meter energy’, regardless of the type of the energy storage system, which is what the German government does. Then, the Korean government can effectively expand energy storage systems in number including residential PV battery energy storage systems in Korea.

      • KCI우수등재

        압축공기에너지저장 : 지질학적 저장 방식과 소요 체적

        류동우 한국자원공학회 2023 한국자원공학회지 Vol.60 No.2

        In recent years, climate change and nationally determined contribution (NDC) policies worldwide have accelerated the transition from fossil energy sources to renewable energy. Consequently, the energy storage system (ESS) sector has emerged as an area of increasing importance in this industry. In particular, compressed air energy storage (CAES), which has a long history of commercialization, is reappraised as a competitive ESS technology with the potential for long-duration and utility-scale storage. The second part of the comprehensive overview aims to provide valuable insights into the planning, design, and construction stages of the CAES system. It describes various geological storage methods for CAES, such as rock salt, aquifers, and depleted gas fields, as well as the potential issues that need to be addressed when deploying each method. Furthermore, it elucidated the isochoric and isobaric storage types and introduced an analytical model for calculating the storage energy density of CAES based on each storage type with sample configurations. 최근 들어 기후 변화와 전 세계 각국의 NDC 정책은 화석 에너지에서 재생에너지로의 전환을 가속화시키고 있다. 이에 따라 에너지저장시스템(ESS) 분야는 산업계에서 점점 더 중요성이 커지는 분야로 부상하고 있다. 특히 상용화의 역사가 오래된 압축공기에너지저장(CAES)은 장시간 및 유틸리티 규모의 저장이 가능한 경쟁력 있는 ESS 기술로 재평가되고 있다. CAES 시스템의 계획, 설계및 건설 단계에서 통찰력을 제공하기 위해 준비한 CAES 관련 두 번째 총설이다. 본 총설에서는 암염 공동, 대수층, 폐가스전과 같은 지질학적 저장 방식을 소개하고, 이와 관련한 주요 현안들을 설명하였다. 또한, 저장공동의 압력 변화에 따라 정압저장과 정적저장에 대한 설명과 각 저장 방식별 저장에너지 밀도를 계산하는 모델을 예시 사례와 함께 소개하였다

      • Storage system for distributed-energy generation using liquid air combined with liquefied natural gas

        Kim, Juwon,Noh, Yeelyong,Chang, Daejun Elsevier 2018 APPLIED ENERGY Vol.212 No.-

        <P><B>Abstract</B></P> <P>This study proposed a storage-generation system for a distributed-energy generation using liquid air combined with liquefied natural gas (LNG). The system comprised three main sites: the renewable-electricity sources (RESs), liquid-air energy storage (LAES), and natural-gas combustion. The low-priced off-peak electricity generated by the RESs was supplied to the LAES. The supplied electricity and previously stored cold energies liquefied the air. At the on-peak time, the liquid air and LNG were pressurized, re-gasified, and burnt immediately after mixing to generate the high-priced electricity while their cold energy was stored in thermal media. The proposed system was evaluated in terms of the thermodynamic, environmental, and economic performances. Its round-trip and storage efficiencies were 64.2% and 73.4%, respectively. The exergy efficiency of the storage-site, the generation-site, and the system was 70.2%, 75.1%, and 62.1%, respectively. The levelized cost of energy (LCOE) ranged from 142.5 to 190.0 $/MWh depending on the sizes and the storage time. The proposed system was compared to the diabatic compressed air-energy storage (CAES) systems and the adiabatic LAES system. The sensitivity analyses compared the systems for the fixed power output and storage time, and for the option to use natural gas. The proposed system showed better storage and round-trip efficiencies than those of comparison systems. Its LCOE was competitive with those of the compared systems except for the under-ground CAES system. The proposed system was an economic and viable option considering the geographical limitations and the environment impacts of the CAES system.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A storage-generation system using liquid air and liquefied natural gas is proposed. </LI> <LI> Round-trip and storage efficiencies of the system are 64.2% and 73.4% respectively. </LI> <LI> Exergy efficiencies of the storage and the system are 70.2% and 62.1% respectively. </LI> <LI> LCOE ranges from 142.5 to 190.0 $/MWh, depending on the sizes and the storage time. </LI> <LI> The proposed system is an economic option without geographical limitations. </LI> </UL> </P>

      • SCIESCOPUSKCI등재

        Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors

        Heo, Jin Young,Park, Jung Hwan,Chae, Yong Jae,Oh, Seung Hwan,Lee, So Young,Lee, Ju Yeon,Gnanapragasam, Nirmal,Lee, Jeong Ik Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.8

        The lack of plant-side energy storage analysis to support nuclear power plants (NPP), has setup this research endeavor to understand the characteristics and role of specific storage technologies and the integration to an NPP. The paper provides a qualitative review of a wide range of configurations for integrating the energy storage system (ESS) to an operating NPP with pressurized water reactor (PWR). The role of ESS technologies most suitable for large-scale storage are evaluated, including thermal energy storage, compressed gas energy storage, and liquid air energy storage. The methods of integration to the NPP steam cycle are introduced and categorized as electrical, mechanical, and thermal, with a review on developments in the integration of ESS with an operating PWR. By adopting simplified off-design modeling for the steam turbines and heat exchangers, the results show the performance of the PWR steam cycle changes with respect to steam bypass rate for thermal and mechanical storage integration options. Analysis of the integrated system characteristics of proposed concepts for three different ESS suggests that certain storage technologies could support steady operation of an NPP. After having reviewed what have been accomplished through the years, the research team presents a list of possible future works.

      • 용액 저장 탱크가 결합된 태양열 구동 흡수식 칠러의 건물 냉방부하별 성능 특성 분석

        최형원(Hyung Won Cho),정재희(Jaehui Jeong),강용태(Yong Tae Kang) 대한설비공학회 2022 대한설비공학회 학술발표대회논문집 Vol.2022 No.6

        The solar-assisted absorption chiller is integrated with the thermal energy storage tanks to implement elongated operation with solar energy as well as to complement the incompatibility of the time gap between the cooling load of the building and the supply of renewable energy source. In this research, the thermal energy storage capacity and the operating characteristics of the system merging a single-effect absorption chiller employing water-lithium bromide as a working fluid and three thermal energy storage tanks were investigated. This system transforms the solar thermal energy into the chemical potential of water-lithium bromide solution to store the thermal energy and has the advantage of not requiring insulation of the thermal energy storage tank. Numerical investigation has been conducted to analyse the ratio between the mass flow rate of refrigerant to absorption chiller and that of thermal energy storage tank, which has been set as a key parameter to optimize the system performance. Based on the data of the cooling load of the residential building in July, which requests the largest cooling load, the feasibility study of energy management plan is conducted to establish the optimization of system performance. The regenerated water vapor is condensed to be supplied to absorption chiller for producing the cooling effect during the daytime and the rest is stored in the refrigerant storage tank to response to the cooling load during the night. This supply ratio of refrigerant is the significant parameter to optimize the operation of the system according to the specific cooling load of the building. Based on a hotel with cooling area of 30 m2, the optimized thermal energy storage density is estimated of 106.7 kWh/m3. The optimal cooling capacity of the evaporator of the absorption chiller is 2.2 kW at the ratio of thermal energy storage of 0.53, which means 53% generated refrigerant should be stored to effectively relieve the cooling load without solar energy. Simultaneously, the maximum thermal energy storage density is estimated of 216.4 kWh/m3, and that of the cooling capacity of the evaporator of absorption chiller is 4.46 kW.

      • Storage-Less and Converter-Less Photovoltaic Energy Harvesting With Maximum Power Point Tracking for Internet of Things

        Yiqun Wang,Yongpan Liu,Cong Wang,Zewei Li,Xiao Sheng,Hyung Gyu Lee,Naehyuck Chang,Huazhong Yang IEEE 2016 IEEE transactions on computer-aided design of inte Vol.35 No.2

        <P>Energy harvesting from natural environment gives range of benefits for the Internet of things. Scavenging energy from photovoltaic (PV) cells is one of the most practical solutions in terms of power density among existing energy harvesting sources. PV power systems mandate the maximum power point tracking (MPPT) to scavenge the maximum possible solar energy. In general, a switching-mode power converter, an MPPT charger, controls the charging current to the energy storage element (a battery or equivalent), and the energy storage element provides power to the load device. The mismatch between the maximum power point (MPP) current and the load current is managed by the energy storage element. However, such architecture causes significant energy loss (typically over 20%) and a significant weight/volume and a high cost due to the cascaded power converters and the energy storage element. This paper pioneers a converter-less PV power system with the MPPT that directly supplies power to the load without the power converters or the energy storage element. The proposed system uses a nonvolatile microprocessor to enable an extremely fine-grain dynamic power management in a few hundred microseconds. This makes it possible to match the load current with the MPP current. We present detailed modeling, simulation, and optimization of the proposed energy harvesting system including the radio frequency transceiver. Experiments show that the proposed setup achieves an 87.1% of overall system efficiency during a day, 30.6% higher than the conventional MPPT methods in actual measurements, and thus a significantly higher duty cycle under a weak solar irradiance.</P>

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼