RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Secondary flow control using endwall jet fence in a high-speed compressor cascade

        Huaping Liu,Shuai Jiang,Yongchuan Yu,Dongfei Zhang,Huanlong Chen 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.10

        This paper proposes a secondary flow control concept using Endwall jet fence (EJF). A parametric investigation concerning the variations of the jet location along the axial and pitch-wise direction as well as the skew angle is conducted numerically to validate the potential of EJF in a high-speed compressor cascade with an inlet Mach number of 0.67. And then the interaction mechanisms between the EJF and the endwall secondary flow are discussed in detail. The results show that the EJF could reduce the corner separation and losses significantly by inputting transverse momentum component, inducing a concentrated jet vortex to block the pitch-wise migration of the passage vortex as well as enhancing the energy exchange between the endwall boundary layer and the mainstream. The jet location and the skew angle are important for the influence of EJF on the cascade performance. In this work, a maximum total pressure loss reduction of 11.6 % is obtained by the EJF located at 30 % of the axial chord and 10 % of the pitch with a skew angle of β = 40°, whereas the jetto-inflow mass flow ratio is only about 0.4 %, validating the high efficiency of this flow control concept. For the off-design points, the EJF also shows appreciable potential on the endwall secondary flow control and loss reduction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼