RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        자율주행자동차 사고의 제조물책임법 적용에 관한 연구 - 소프트웨어의 제조물성 근거규정 도입에 대하여 -

        박지흔 제주대학교 법과정책연구원 2020 국제법무 Vol.12 No.1

        The autonomous vehicle (AV) means a vehicle which runs autonomously to a destination using an automated driving system and software which controls the system. Autonomous vehicles currently being developed include an on-board automated driving system which functions as artificial intelligence and autonomous driving software which enables a vehicle to drive itself. The automated driving system is developing in the way of not only combining advanced driver assistance systems (ADAS) but also figuring out driving environments based on interconnection by collecting information from other vehicles and providing such collected information to the automated driving system of another vehicle. With the latest technologies for automated vehicles evolving all over the world, it is expected that vehicles with Level 3 self-driving technology, conditional automation, where autonomous driving is practically possible with steering, acceleration and deceleration, braking, etc. conducted automatically, though drivers are required to intervene in unexpected situations, will be commercialized in Korea from July 2020. Since car accidents so far have been caused mainly by drivers’ negligence or defects in vehicles, the principles of liability for illegal act under the Civil Law or those of product liability have been applied to civil liability arising from the accidents. However, in the era of commercialization of autonomous vehicles, there is a high possibility that most of the accidents will be caused by factors outside of a driver such as a defect in autonomous driving software. Therefore, liability of manufacturers of software related to autonomous driving needs to be clarified for the purpose of protecting customers and providing remedy for victims. However, since the current Product Liability Law defines the product as ‘movables’, theories are divided into pros and cons as for the application of the principles of product liability to car accidents caused by defects in built-in autonomous driving software, and there is a certain limit in the actual application of those principles. Therefore, the term ‘product’ defined in the Product Liability Law should include software. 자율주행자동차는 자율주행보조장치와 이를 제어하는 자율주행소프트웨어에 의하여 스스로 목적지까지 운행할 수 있는 차량을 말한다. 현재 개발되는 자율주행자동차는 자동차 자체에 인공지능에 해당하는 자율주행시스템이 부착되어 있는 형태이며, 자율주행시스템은 첨단운전자보조장치들을 통합할 뿐만 아니라, 다른 차량들로부터 정보를 수집하고 수집한 정보를 다른 자율주행자동차의 자율주행장치에 제공하는 상호정보교환을 하며 스스로 주행 환경을 판단하는 방식으로 작동하고 있으며, 이러한 자율주행보조장치들을 제어하여 자동차가 스스로 운전할 수 있게 해주는 프로그램이 자율주행소프트웨어이다. 오늘날 자율주행자동차의 기술은 전 세계적으로 발전하고 있으며, 우리나라에서도 2020. 7.부터 차량의 조향과 가・감속, 제동 등을 모두 자동으로 수행하여 실질적으로 자율주행이 가능하지만 돌발 상황에서는 운전자가 개입을 해야 하는 조건부 자동화 단계인 레벨3 자율주행 기술을 탑재한 자동차가 상용화될 예정이다. 지금까지의 자동차 사고는 주로 운전자의 과실이나 자동차의 결함으로 인한 것이었으므로 그 민사책임도 민법상의 불법행위책임이나 제조물책임의 법리를 통하여 해결해 왔다. 그러나 자율주행자동차 상용화 시대에는 운전자 외적인 요인으로 인한 사고, 즉 자율주행소프트웨어의 결함 등으로 인한 사고가 대부분일 가능성이 매우 높다. 그러므로 자율주행소프트웨어 제조업자의 책임을 명확히 하여 소비자 보호와 더불어 피해자를 구제할 필요성이 있다. 하지만 현행 제조물책임법은 제조물의 정의를 ‘동산’으로 한정하고 있기 때문에, 자동차에 탑재된 자율주행소프트웨어의 결함으로 인한 사고에 제조물책임의 법리를 적용하는데 있어 학설상 찬반양론이 대립되고 있으며, 실제로 이를 적용하는 데는 일정한 한계가 있다. 그러므로 제조물책임법상의 제조물 개념에 소프트웨어를 포함하는 규정을 도입하여야 할 것이다.

      • 자율주행 자동차용 임베디드 소프트웨어

        이신재(Sinjae Lee),김진하(Jinha Kim),기석철(Seok-Cheol Kee) 한국자동차공학회 2018 한국자동차공학회 부문종합 학술대회 Vol.2018 No.6

        자율주행 자동차는 인공지능에 의한 인지, 센서, 측위 그리고 제어의 융합인 자율주행 기술을 이용하여 이동수단 위주의 더욱 안전하고 편리한 자동차, 커넥티드 카, 그리고 사용자 서비스 지향 자동차로 거듭나고 있다. 점차 편리함와 안전 서비스를 제공하기 위한 미래형자동차는 자율주행을 위한 각종 센서와 제어기 및 구동장치로 이루어진 장치들이 보편화되고 있다. 또한 이러한 서비스는 전자제어장치들에 설계·설치되고, 차량 내부네트워크를 통한 상호 연동으로 이루어진다. 한편, ECU는 일종의 자율주행용 임베디드 시스템으로 컴퓨터 하드웨어와 소프트웨어가 조합되어 특정한 목적을 수행하는 컴퓨팅 장치를 의미한다. 또한 자율주행 차량용 임베디드 소프트웨어란 마이크로프로세서 및 비 휘발성 메모리에 내장되어 동작하는 운영체제, 미들웨어 및 응용 프로그램을 총칭한다. 본 논문에서는 자율주행 차량용 임베디드 소프트웨어에 대하여 살펴본다.

      • 자동차 LiDAR 센서 소프트웨어의 ISO 26262 대응을 위한 소프트웨어 아키텍처 정량적 평가 방법

        김종필(Jongphil Kim),김영재(Youngjae Kim) 한국자동차공학회 2023 한국자동차공학회 학술대회 및 전시회 Vol.2023 No.11

        Recently, as the application of LiDAR sensors has become widespread in autonomous driving and ADAS, the functional safety of the LiDAR sensors is becoming more important. In general, safety related LiDAR sensors shall meet the ASIL B of ISO 26262 on the market. When developing software embedded on a LiDAR sensor system, software architecture design principles corresponding to ASIL B must be applied. However, the design principles are not systematically applied in practice. In this paper, we propose a UML-based software architecture evaluation method to apply software architecture design principles of ISO 26262 ASIL B systematically and quantitatively for designing LiDAR sensor software architecture. The proposed method can provide a means to construct evidence that the LiDAR sensor software architecture design satisfies ISO 26262 ASIL B.

      • KCI등재

        자율주행자동차 운행 중의 사고발생과 손해배상책임

        최현태(Choi, Hyun-Tae) 한양법학회 2018 漢陽法學 Vol.29 No.1

        The Autonomous Vehicles, also known as driverless cars, have recently emerged as an important issue of the public debate over the vehicle business market. In spite of the high public interest, legal issues, such as liability, and consequently damages, by the autonomous vehicles are broadly hailed. To date, there has been minimal research in the Korean law field regrading autonomous transportation technology. In respect of that the autonomous vehicle would cause vigorous debates for new liability framework for injuries totally against the existing liability framework, this study establishes the contours of argument for the new liability framework associated with the new technology. To begin with, this paper would like to examine whether court to decide grants liability for any accident on autonomous car to the car’s owner or operator under traditional tort law principles. However, this article addresses that, under the current liability frame, the injured party would be difficult to directly bear some responsibility of a negligence for accident to the owner or operator because the responsibility under the frame may ultimately turn on degree of control of the driver over the car. Next, this paper decides whether the party can raise product liability lawsuit to car manufacturers, software designers, and component makers based on the existing product liability principles. Finally, this paper proposes congress an alternative liability framework over the next ten years or so years as society transitions to widely popularize the autonomous vehicle.

      • KCI등재

        자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가

        조문기(Moon Ki Cho),배경율(Kyoung Yul Bae) 한국지능정보시스템학회 2021 지능정보연구 Vol.27 No.1

        Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 10<SUP>6</SUP>/km² In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it’s difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

      • 오픈소스 자율주행 SW플랫폼 Autoware의 전기 섀시 플랫폼 적용 연구

        우준상(Junsang Woo),빈존(Vinjohn V. Chirakkal),곽만기(Manki Kwak),김상원(Sangwon Kim) 한국자동차공학회 2023 한국자동차공학회 학술대회 및 전시회 Vol.2023 No.11

        자율주행 차량은 주행경로상의 장애물들과 주변환경 요소들을 인식하고 주행경로를 생성하고 이를 추종하도록 차량을 제어한다. 본 논문은 오픈소스 소프트웨어 중 하나인 AWF (Autoware Foundation)이 배포한 오토웨어 (Autoware.Universe)를 기반으로 전기차 섀시 플랫폼인 오페라킷 (Opera-Kit)을 자율주행 시스템을 구현하고 테스트하였다. 오페라킷의 자차 위치 측위, 경로생성 및 추종 알고리즘을 사용하여 오페라킷 자율주행 시스템을 구현하였다. 오토웨어 내부 코드 분석을 통하여 회피 주행 파라미터를 산출하였고 실차 주행 테스트 전에 시뮬레이션 테스트를 통해 실제 주행 시 발생할 수 있는 오류를 사전에 검증하였다. 이를 통하여 실차 테스트에 대한 주행 신뢰성을 높였다.

      • KCI등재

        자율주행차량 운행정보 기록을 위한 통합형 V2X 통신 데이터 수집에 관한 연구

        김지훈,김태원,김우식,이동환,김태림,권성진 한국자동차공학회 2023 한국 자동차공학회논문집 Vol.31 No.12

        As autonomous vehicles and connected car technologies advance, the types of data that must be collected from or provided by vehicles have been expanding. An IVN(In-Vehicle Network) or V2X(Vehicle to Everything) communication system shares vehicle data internally and externally. The acceleration of automobile software development increases the safety and convenience of automobiles by sharing various vehicle data with surrounding vehicles, roadside devices, and control centers. This paper proposes a vehicle data collection structure that transmits or receives vehicle data generated from autonomous vehicles or connected cars to roadside base stations and control centers that receive vehicle communication. In particular, the time delay is analyzed through V2X data collection experiments for several V2X communication methods. The results were compared to the time delay performance between autonomous vehicles and the control center for each communication method in an urban environment. By utilizing the V2X-based vehicle data collection structure proposed in this paper, we expect to expand into advanced autonomous driving technologies, such as remote control, big data analysis, and accident record analysis that improve the safety standards and convenience offered by autonomous vehicles and connected cars.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼