RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Marxan with Zones 적용을 통한 북한산국립공원 공원자연보존지구 재설정 방안 연구

        염정헌 ( Jung-hun Yeum ),한봉호 ( Bong-ho Han ) 한국환경과학회 2017 한국환경과학회지 Vol.26 No.2

        This study aimed to develop strategies to re-establish the Park Nature Conservation Area in Bukhansan National Park, reflecting landscape ecological value by using the zonation program Marxan with Zones. Planning unit was set by watershed, and the basic data were mapped, considering topographical and ecological values. Mapped indicators were analyzed with the application framework of Marxan with Zones by indexing some indicators. The zones divided into Park Nature Conservation Area (Zone A), Park Nature Environment Area (Zone B) which is reflected on the concept of Potential Park Nature Conservation Area and Park Nature Environment Area (Zone C). The best solution for each of the scenarios was fixed through the sensitiveness analysis. From these, the final solution was selected considering five criteria including area ratio of conservation area and grouping. Lastly, the final solution was verified in the overlapped analysis with recent zonation. According to the results, the number of watersheds was 77, with an average area of 1,007,481 m<sup>2</sup>. In terms of basic mapping and indexation, the slope index and number of landscape resources for topographical property were average 0.22 and 38 places, respectively. Biotope index was average 0.69 and legally protected species was 14 species, reflecting ecological values. As the social and economic indicators, trail index was average 0.04, and the number of tour and management facilities was 43 places. Through the framework of Marxan with Zones, the best solution for scenario 1 which was set by the highest conservation criteria was selected as the final solution, and the area ratio of Park Nature Conservation Area and grouping was excellent. As the result of overlapped analysis, suggested zonation of the Park Nature Conservation was better than the recent zonation in the area raito (28.3%), biotope grade (15.4%) and the distribution points (10 places) of legally protected species with verification of proper distribution of conservation features according to the zone.

      • KCI등재

        Assembly and Disassembly of the Micropatterned Collagen Sheets Containing Cells for Location‑Based Cellular Function Analysis

        손재정,김희훈,이준희,정원일,박제균 한국바이오칩학회 2021 BioChip Journal Vol.15 No.1

        The liver has complex microenvironments, where parenchymal hepatocytes and non-parenchymal cells coexist. Hepatocytes exhibit different metabolic functions depending on their location by the oxygen gradient and the transcriptional changes of genes, which is called liver zonation. Three-dimensional (3D) liver tissue engineering has reproduced the complex microenvironments, but there is a limitation in analyzing them by location. In this study, a novel 3D tissue-level hepatic cell culture platform is developed via stacking the manipulable collagen sheets to spatially analyze the reconstructed metabolic zonation. The controlled assembly of the sheets containing hepatocytes and endothelial cells, respectively, creates a 3D co-culture environment that improves hepatic function. In addition, the sheet micropatterning can be used to control the accessibility of oxygen and nutrients in the stacked sheets. The disassembly of the stacked sheets enables a layer-by-layer analysis and allows us to confirm the metabolic zonation qualitatively. A demonstration of acetaminophen-induced liver injury using the stacked sheets shows the improved drug sensitivity by co-culture and chemical induction and presents the quantitative results of the different cellular responses to the drug by layers according to metabolic zonation. Therefore, this platform is expected to be used for an in-depth analysis of drug toxicity in complex tissues via spatial analysis.

      • KCI등재

        생태적가치 기반의 오대산국립공원 보전지구 재설정 방안 연구

        염정헌 한국환경과학회 2020 한국환경과학회지 Vol.29 No.10

        This study aimed to re-establish the conservation area reflecting landscape ecological value through scenario program, targeting Odaesan National Park. The basic data were mapped in watershed planning units, which were set considering topographical and ecological values. The framework of Marxan with Zones, using an indexation process, was using the mapped indicators. Each best solution according to the scenarios was assessed through sensitivity analysis, and a final solution was selected among the best solutions, considering criteria including area ratio of conservation area and grouping. Lastly, the final solution was verified in the overlap analysis with recent zonation. As a result, through the framework of Marxan with Zones, the best solution of scenario 1, which was set by the highest conservation criteria was selected as the final solution, and the area ratio of conservation area and grouping was excellent. As for the overlap analysis, the suggested conservation area was improved compared to recent zonation in terms of the area ratio (39.4%), biotope grade Ⅰ (35.6%) and the distribution points (7 places) of legally protected species.

      • SCOPUSKCI등재

        팔당호 연안대에서 대형수생식물의 분포

        Cho, Kang-Hyun,Kim, Joon-Ho 한국생태학회 1994 Journal of Ecology and Environment Vol.17 No.4

        In the littoral zone of Lake Paltangho, a vegetation map of aquatic macrophytes was constructed to estimate their occupied area, and the change of abundance of submersed macrophytes was examined along water depth to elucidate niche perferences on the depth gradient. Total area of the littoral zone was 267 ha, of which submersed, emergent and floating-leaved macrophytes covered 155ha, 103 ha and 10ha, respectively. Submersed macrophytes were distributed within a water-depth of 2.5m, with an apparent pattern of zonation: Vallisnaria gigantea and Ceratophyllum demersum at the deeper water depth of 1.5~2.5m.

      • KCI등재

        Selecting Protected Area Using Species Richness

        권혁수,김지연,서창완 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa’s distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird’s habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird's habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        Selecting Protected Area Using Species Richness

        Kwon, Hyuksoo,Kim, Jiyoen,Seo, Changwan Korean Society of Environment and Ecology 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa's distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird's habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird's habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        Selecting Protected Area Using Species Richness

        Kwon, Hyuksoo,Kim, Jiyoen,Seo, Changwan 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa’s distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird’s habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird's habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        Selecting Protected Area Using Species Richness

        ( Hyu Ksoo Kwon ),( Ji Yoen Kim ),( Chang Wan Seo ) 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa’s distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird’s habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird``s habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        저서성 단각류 Pontogeneia rostrata의 종내 대상분포와 주야-조석주기

        유옥환,서해립,서호영,YU Ok Hwan,SUH Hae-Lip,SOH Ho Youn 한국수산과학회 1998 한국수산과학회지 Vol.31 No.4

        돌산도 모래해안 쇄파대에서 1993년 1월 소조와 대조때 1조석주기 동안 채집한 저서성 단각류 시료를 가지고. 주야와 조석주기에 따른 Pontogeneia rostrata의 종내 대상분포를 조사했다. p. rostrata의 밀도는 대조보다는 소조때 높았다. 개체군을 성체 암$\cdot$수컷과 미성체로 나누어 보면. 미성체와 수컷의 밀도가 각각 소조와 대조때 가장 높았다. 체장빈도 자료에 따르면. 겨울철에 미성체의 사망이 큰 것 같다. 야간 표층에서 소조때는 미성체 그리고 대조때는 성체암$\cdot$수컷이 유의하게 많았다. 이것은 미성체와 성체의 수직이동 양상이 조석에 따라 다르게 나타난 것으로 여겨 진다. 대조 밀물때 평균해수면 (MSL) 위에 나타난 p. rostrata의 $90\%$ 이상이 성체였다. MSL 위에서 암컷/수컷의 비율이 감소했고. 암컷의 체장은 변동이 없었지만 수컷의 체장은 증가했다. 이것은 몸이 큰 수컷의 활발한 이동습성을 가리킨다. 이런 행동은 큰 수컷의 분포역 확장으로 이어지고, 교미와 섭식경쟁에 있어 큰 수컷에게 유리할 것으로 여겨진다. 성체가 대조 야간에 MSL 위 100cm에서 채집되기도 하지만. 나머지 기간에 p. rostrata 개체군은 대부분 MSL 아래에 머물렀다. 분포중심은 MSL 아래 50cm에서 200cm 사이였다. Using a sledge net, the benthic amphipods were taken over one cycle of the neap and spring tides in January 1993 at the sandy shore surf zone of Dolsando, southern Korea. From these samples, we investigated the diel and tidal effects on the intraspecific zonation of Pontogeneia rostrata. The density of p. rostrata was higher during neap tide than spring. Of three categories (adult males and females and juveniles), juveniles and males attained to its highest density during neap and spring tides, respectively. Length- frequency data show that the high mortality of juveniles seemed to occur in winter. In the surface at night, it is significant that juveniles were significantly more abundant during neap tide than spring, whereas both adult males and females were more abundant during spring tide than neap. This suggests that the vortical migration patterns of juveniles and adults vary with the type of tides. During flood of spring tide, more than $90\%$ of population collected at the area above the mean sea level (MSL) were adults. With a decrease of female/male ratio, size of males increased there but that of female did not change, indicating an active migration of large males. This behavior can provide an extension of distribution area far large males, and also give a competitive advantage to large male against small one for mate and feeding. Although adult p. rostrata was collected at 100 cm above MSL at night during spring tide, a major portion of population as usually present on the shore below MSL. The center of zonation was restricted from 50 cm to 250 cm below MSL.

      • KCI등재

        Information value based landslide susceptibility zonation of Dharamshala region, northwestern Himalaya, India

        Swati Sharma,A. K. Mahajan 대한공간정보학회 2019 Spatial Information Research Vol.27 No.5

        This study investigates the application of statistical information value method (In V) for landslide susceptibility zonation of Dharamshala region, Kangra valley of Himachal Pradesh, India. The study area witnesses a number of landslides due to the prevailing factors such as slope angle, aspect, lithology, soil type, land use pattern, drainage density, and fault density. A landslide inventory map was prepared for the study area to understand the spatial distribution of landslides and their correlation with the prevailing causal factors. The mapped landslides covered an area of approximately 1.1 km2 (landslide training data 0.66 km2 and testing data 0.44 km2) out of the total study area (39.3 km2). Degree of correlation of the causal factors with the mapped landslides was inferred using the bivariate statistical information value (In V) method. The results show that, VHS zone has 0.65 km2 landslide affected area whereas, the HS zone has 0.01 km2 landslide affected area which means that the complete landslide training data (0.66 km2) falls in the HS and VHS zones. The performance of the landslide susceptibility zonation map for predicting the future landslide events was inferred based on the prediction rate curve which gave 0.96 area under curve value.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼