RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 석탄의 바이오메탄 전환율 향상을 위한 전기화학 전처리

        최태선 ( Tea-sun Chae ),우정희 ( Jung-hui Woo ),송영채 ( Young-chae Song ),김동훈 ( Dong-hoon Kim ) 한국폐기물자원순환학회(구 한국폐기물학회) 2018 한국폐기물자원순환학회 춘계학술발표논문집 Vol.2018 No.-

        석탄은 탄화정도에 따라 고품질의 무연탄 및 역청탄(Hard coal)과 아역청탄과 갈탄(Brown coal)으로 크게 분류한다. 무연탄은 고정탄소 함량(85~95%)과 발열량이 높고 수분함량이 낮아 화력발전소 및 연탄 재료로 활용된다. 하지만 저품위 석탄은 발열량이 4,000~6,000kcal/kg으로 낮고, 수분 함량이 30~70%로 높으며, 산소 관능기가 함유된 탄화수소가 높으므로 자연발화 위험성이 높은 등 많은 단점들 때문에 전체 석탄매장량 중 약 절반가량(45%)이나 되지만 상당량이 채굴되지 않고 남아있다(2007, 세계에너지 위원회). 본 연구에서는 풍부한매장량을 가진 갈탄 등의 고 수분 저급석탄으로부터 바이오메탄을 생산하고자 생물학적 분해효율을 증가시키기 위하여 펜톤산화 및 고전압펄스(High voltage electrical pulses) 전처리를 수행하였다. 실험을 위하여 호주산 갈탄, 캐나다산 갈탄, 러시아산 이탄을 이용하였으며, 펜톤산화 전처리는 석탄을 1mm이하의 입자로 분쇄하여 H<sub>2</sub>O<sub>2</sub>/Fe<sup>2+</sup>비를 75%, 30, 15, 10, 7.5%로 주입하여 120rpm에서 Jar-Tester로 1시간 반응시켰다. 고전압전기충격 전처리는 펜톤산화 전처리실험 조건과 동일하게 시료를 준비하여 고전압 펄스장치를 이용하여 출력전압 40kV에서 15분간 처리하였다. 전처리를 끝낸 시료는 용액의 SCOD와 석탄의 처리 전, 후의 표면분석과 화학조성 변화를 관찰하기 위하여 적외선 흡수 스펙트럼분석(FT-IR)을 수행하였다. 펜톤산화 처리 후 용액의 SCOD농도변화와 SEM촬영 및 FT-IR 분석결과, 전처리 후의 석탄은 바이오메탄 전환율이 높아질 수 있을 것으로 평가되었다.

      • 석탄의 바이오메탄 전환율 향상을 위한 전기화학 전처리

        최태선,우정희,송영채,김동훈 한국폐기물자원순환학회 2018 한국폐기물자원순환학회 학술대회 Vol.2018 No.05

        석탄은 탄화정도에 따라 고품질의 무연탄 및 역청탄(Hard coal)과 아역청탄과 갈탄(Brown coal)으로 크게 분류한다. 무연탄은 고정탄소 함량(85~95%)과 발열량이 높고 수분함량이 낮아 화력발전소 및 연탄 재료로 활용된다. 하지만 저품위 석탄은 발열량이 4,000~6,000kcal/kg으로 낮고, 수분 함량이 30~70%로 높으며, 산소 관능기가 함유된 탄화수소가 높으므로 자연발화 위험성이 높은 등 많은 단점들 때문에 전체 석탄매장량 중 약 절반가량(45%)이나 되지만 상당량이 채굴되지 않고 남아있다(2007, 세계에너지 위원회). 본 연구에서는 풍부한 매장량을 가진 갈탄 등의 고 수분 저급석탄으로부터 바이오메탄을 생산하고자 생물학적 분해효율을 증가시키기 위하여 펜톤산화 및 고전압펄스(High voltage electrical pulses) 전처리를 수행하였다. 실험을 위하여 호주산 갈탄, 캐나다산 갈탄, 러시아산 이탄을 이용하였으며, 펜톤산화 전처리는 석탄을 1mm이하의 입자로 분쇄하여 H2O2/Fe2+비를 75%, 30, 15, 10, 7.5%로 주입하여 120rpm에서 Jar-Tester로 1시간 반응시켰다. 고전압전기충격 전처리는 펜톤산화 전처리실험 조건과 동일하게 시료를 준비하여 고전압 펄스장치를 이용하여 출력전압 40kV에서 15분간 처리하였다. 전처리를 끝낸 시료는 용액의 SCOD와 석탄의 처리 전, 후의 표면분석과 화학조성 변화를 관찰하기 위하여 적외선 흡수 스펙트럼분석(FT-IR)을 수행하였다. 펜톤산화 처리 후 용액의 SCOD농도변화와 SEM촬영 및 FT-IR 분석결과, 전처리 후의 석탄은 바이오메탄 전환율이 높아질 수 있을 것으로 평가되었다.

      • KCI등재

        석탄가스화를 위한 중국산 저급 석탄의 광물학적 및 건조 특성

        박종력 ( Chong Lyuck Park ),김병곤 ( Byoung Gon Kim ),전호석 ( Ho Seok Jeon ),김상배 ( Sang Bee Kim ),박석환 ( Suk Hwan Park ),이재령 ( Jae Ryeong Lee ) 한국광물학회 2010 광물과 암석 (J.Miner.Soc.Korea) Vol.23 No.3

        석탄가스화는 청정석탄이용기술의 한 분야로 최근 국제 유가의 급격한 변동과 더불어 매우 각광을 받고 있는 기술이다. 본 연구에서는 중국 내몽고 지역의 저급석탄을 출발물질로 가스화를 위한 광학적 특성, X선 분광특성, X선 회절특성, 광물학적 특성, 건조특성 등을 분석하였다. 분석결과 석탄의 등급은 slagging성과 fouling성이 매우 낮으며 착화온도가 250℃ 정도인 brown coal인 것으로 조사되었고, 석영, 능철석, 점토광물 등이 주요 불순물로 혼재하는 것을 알 수 있었다. 또한 초기 수분이 28%로 매우 높기 때문에 이를 쉽게 건조하기 위한 방법으로 열풍건조와 마이크로웨이브 건조기술을 적용하여 비교한 결과, 마이크로웨이브를 이용한 건조가 좀 더 효과적인 것을 알 수 있었다. Coal gasification technology in the sector of domestic clean coal technologies is being into the limelight since recent dramatic rise of international oil price. In this study, we used a low rank coal from Inner Mongolia, China as a starting material for gasification. Various properties including optical, mineralogical, X-ray spectroscopic, X-ray diffraction, and drying property were measured and tested in order to estimate the suitability of the coal to gasification. The coal was identified as a brown coal of lignite group from the measurement of vitrinite reflectance. The coal has very low slagging and fouling potentials, and the ignition temperature is about 250℃. The major impurities consist of quartz, siderite, and clay minerals. Additionally, the coal had moisture content above 28%. Tests for finding effective drying method showed that the microwave drying is more effective than thermal drying.

      • KCI등재후보

        CO 합성을 위한 저급석탄-CO<sub>2</sub> 촉매 가스화 반응

        이호용,이종대,Lee, Ho Yong,Lee, Jong Dae 한국응용과학기술학회 2016 한국응용과학기술학회지 Vol.33 No.3

        본 연구에서는 합성가스 CO를 생산하기 위해 저급 석탄-$CO_2$ 촉매 가스화 실험을 수행하였다. 제조된 CO가스 특성은 키데코 탄과 신화 탄에 KOH, $K_2CO_3$, $Na_2CO_3$ 촉매들의 화학적 활성화 방법을 이용하여 조사되었다. CO 제조공정은 석탄과 화학약품 활성화 비율, 가스 유량, $CO_2$ 전환 반응온도와 같은 실험 변수 분석을 통해 최적화되었다. 제조된 합성 가스는 가스 크로마토그래피(GC)에 의해 분석 되었다. 실험조건 $T=950^{\circ}C$, $CO_2$ 유량 100 cc/min에서, 20 wt% $Na_2CO_3$가 혼합된 키데코 탄에 대해 98.6%, 20 wt% KOH가 혼합된 신화탄에 대한 98.9% $CO_2$ 전환율을 얻었다. 또한, 저급 석탄-촉매 가스화 반응은 동일한 공급 비와 반응 조건에서 97.8%, 98.8%의 CO 선택도를 얻었다. In this study, the experiments on optimal CO gas synthesis were conducted using low grade coal-$CO_2$ catalyst gasification reaction. The characteristics of generated CO gas were investigated using the chemical activation method of KOH, $K_2CO_3$, $Na_2CO_3$ catalysts with Kideco and Shewha coal. The preparation process has been optimized through the analysis of experimental variables such as ratio between activating chemical agents and coal, the flow rate of gas and reaction temperature during $CO_2$ conversion reaction. The produced CO gas was analysed by Gas Chromatography (GC). The 98.6% $CO_2$ conversion for Kideco coal mixed with 20 wt% $Na_2CO_3$ and 98.9% $CO_2$ conversion for Shenhua coal mixed with 20 wt% KOH were obtained at the conditions of $T=950^{\circ}C$ and $CO_2$ flow rate of 100 cc/min. Also, the low grade coal-$CO_2$ catalytic gasification reaction showed the CO selectivities(97.8 and 98.8 %) at the same feed ratio and reaction conditions.

      • KCI등재

        저급 석탄과 혼합한 폐촉매의 수증기 가스화 반응에 미치는 영향

        곽재훈,서석진,이소정,송병호,손정민 한국수소및신에너지학회 2012 한국수소 및 신에너지학회논문집 Vol.23 No.6

        We have investigated the kinetics and activity of waste catalysts for steam-lignite gasification. Waste catalysts I, II, III and reference K2CO3 were used and physical mixed with a coal. The gasification experiments were carried out with the low rank coal loaded with 1 wt% and 5 wt% catalyst at the temperature range from 700 to 900℃ using thermobalance reactor. It was observed that the carbon conversion reached almost 100% regardless of the kinds of catalysts at 900℃. The shortest time to reach the designated conversion was obtained for 1 wt% waste catalyst II and 5 wt% K2CO3 at 900℃. The gasification reaction rate constant increased with increasing the temperature. Highest rate constant was obtained with K2CO3 at 900℃. The lowest activation energy was 69.42 kJ/mol for 5 wt% waste catalyst II. The waste catalyst had an influence on the reduction of activation energy.

      • 순환유동층보일러의 연료유연성 실증연구

        배달희(Bae, Dal-Hee),선도원(Shun, Do-Won) 한국신재생에너지학회 2008 한국신재생에너지학회 학술대회논문집 Vol.2008 No.10

        Fuel flexibility of CFBC boiler was examined. Combustion characteristics of low grade coal, coal sludge, coal RDF mixture and RDF were compared. The operation result of a commercial 130TPH CFBC co-generation boiler burning a low grade Chinese coal were analysed. Burning characteristics of coal/RDF mixture and coal and industrial sludge mixture were studied in a 0.1MWth scale CFBC test rig. Also RDF fuel were tested in a 8TPH CFBC test facility. Though fuel characteristics were different, the combustion modes were all very stable. The temperature were maintained in between 800-950?C.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼