RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fatigue life prediction in frequency domain using thermal-acoustic loading test results of titanium specimen

        고은수,김문국,김인걸,Min-Sung Kim 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.10

        High supersonic vehicles are exposed to high temperature generated by aerodynamic heating. Thermal protection system structures are used on the skin of the fuselage and wings to prevent the transfer of high temperatures into the interior of the vehicle. Thin skin panels can be exposed to acoustic loads by high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic/hypersonic vehicle skin structures under thermal-acoustic loads and to predict fatigue life. In this paper, thermal-acoustic testing of titanium specimens under thermalacoustic load was performed. The response stress history of the specimen was obtained, and the fatigue life was predicted using the time and frequency domain fatigue life prediction method. The effect of the mean stress on the predicted results of the time and frequency domian fatigue life was analyzed. Stress history was generated using a sine series of random phases from stress PSD without phase information. The fatigue life in the generated stress history was predicted using the time and frequency domain fatigue life prediction methods. As the temperature increased, the mean stress of the response stress and the error in the frequency domain fatigue life prediction results increased. The error in the frequency domain fatigue life prediction results with the mean stress effect were greatly reduced by considering the completely reversed stress.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼