RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity

        Yim, H,Shin, S-B,Woo, S U,Lee, P C-W,Erikson, R L The Author(s) 2017 Oncogene Vol.36 No.7

        <P>Although 53BP1 has been established well as a mediator in DNA damage response, its function in mitosis is not clearly understood. We found that 53BP1 is a mitotic-binding partner of the kinases Plk1 and AuroraA, and that the binding with Plk1 increases the stability of 53BP1 by accelerating its interaction with the deubiquitinase USP7. Depletion of 53BP1 induces mitotic defects such as chromosomal missegregation, misorientation of spindle poles and the generation of extra centrosomes, which is similar phenotype to USP7-knockdown cells. In addition, 53BP1 depletion reduces the levels of p53 and centromere protein F ( CENPF), interacting proteins of 53BP1. These phenotypes induced by 53BP1 depletion were rescued by expression of wild-type or phosphomimic mutant 53BP1 but not by expression of a dephosphomimic mutant. We propose that phosphorylation of 53BP1 at S380 accelerates complex formation with USP7 and CENPF to regulate their stability, thus having a crucial role in proper centrosome positioning, chromosomal alignment, and centrosome number.</P>

      • SCISCIESCOPUS

        Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis

        Park, J-L,Lee, Y-S,Song, M-J,Hong, S-H,Ahn, J-H,Seo, E-H,Shin, S-P,Lee, S-J,Johnson, B H,Stampfer, M R,Kim, H-P,Kim, S-Y,Lee, Y S The Author(s) 2017 Oncogene Vol.36 No.49

        RNA polymerase III (Pol III) transcribes medium-sized non-coding RNAs (collectively termed Pol III genes). Emerging diverse roles of Pol III genes suggest that individual Pol III genes are exquisitely regulated by transcription and epigenetic factors. Here we report global Pol III expression/methylation profiles and molecular mechanisms of Pol III regulation that have not been as extensively studied, using nc886 as a representative Pol III gene. In a human mammary epithelial cell system that recapitulates early breast tumorigenesis, the fraction of actively transcribed Pol III genes increases reaching a plateau during immortalization. Hyper-methylation of Pol III genes inhibits Pol III binding to DNA via inducing repressed chromatin and is a determinant for the Pol III repertoire. When Pol III genes are hypo-methylated, MYC amplifies their transcription, regardless of its recognition DNA motif. Thus, Pol III expression during tumorigenesis is delineated by methylation and magnified by MYC.

      • Aberrant GATA2 epigenetic dysregulation induces a GATA2/GATA6 switch in human gastric cancer

        Song, S H,Jeon, M S,Nam, J W,Kang, J K,Lee, Y J,Kang, J Y,Kim, H P,Han, S W,Kang, G H,Kim, T Y The Author(s) 2018 Oncogene Vol.37 No.8

        <P>Six GATA transcription factors play important roles in eukaryotic development. Among these, GATA2, an essential factor for the hematopoietic cell lineage, exhibits low expression in human gastric tissues, whereas GATA6, which is crucial for gastrointestinal development and differentiation, is frequently amplified and/or overexpressed in human gastric cancer. Interestingly, we found that GATA6 was overexpressed in human gastric cancer cells only when GATA2 expression was completely absent, thereby showing an inverse correlation between GATA2 and GATA6. In gastric cancer cells that express high GATA6 levels, a GATA2 CpG island is hypermethylated, repressing expression in these cells. In contrast, GATA6 expression is undetectable in GATA2-overexpressing gastric cancer cells, which lack GATA2 DNA methylation. Furthermore, PRC2 complex-mediated transcriptional silencing of GATA6 was observed in the GATA2-overexpressing cells. We also show that the GATA2 and PRC2 complexes are enriched within the GATA6 locus, and that the recruitment of the PRC2 complex is impaired by disrupting GATA2 expression, resulting in GATA6 upregulation. In addition, ectopic GATA2 expression significantly downregulates GATA6 expression, suggesting GATA2 directly represses GATA6. Furthermore, GATA6 downregulation showed antitumor activity by inducing growth arrest. Finally, we show that aberrant GATA2 methylation occurs early during the multistep process of gastric carcinogenesis regardless of Helicobacter pylori infection. Taken together, GATA2 dysregulation by epigenetic modification is associated with unfavorable phenotypes in human gastric cancer cells by allowing GATA6 expression.</P>

      • Effect of an obesity prevention program focused on motivating environments in childhood: a school-based prospective study

        Yang, Y,Kang, B,Lee, E Y,Yang, H K,Kim, H-S,Lim, S-Y,Lee, J-H,Lee, S-S,Suh, B-K,Yoon, K-H The Author(s) 2017 International journal of obesity Vol.41 No.7

        <P>CONCLUSIONS: A simple environmental intervention could effectively influence children. By adding to previously studied strategies, we can develop a more effective obesity prevention program for children.</P>

      • SCISCIESCOPUS

        Regulation of PLK1 through competition between hnRNPK, miR-149-3p and miR-193b-5p

        Shin, Chang Hoon,Lee, Hong,Kim, Hye Ree,Choi, Kyung Hee,Joung, Je-Gun,Kim, Hyeon Ho The Author(s) 2017 CELL DEATH AND DIFFERENTIATION Vol.24 No.11

        <P>Polo-like kinase 1 (PLK1) is a critical regulator of cell cycle progression and apoptosis. However, its regulation remains poorly understood. In the present study, we investigated the molecular mechanism underlying the post-transcriptional regulation of PLK1. We observed that heterogeneous nuclear ribonucleoprotein K (hnRNPK) and PLK1 were positively associated in several different cancers and high expression levels of them correlated with poor prognosis in patients with cancer. Knockdown of hnRNPK resulted in reduced expression of PLK1, whereas conversely, PLK1 expression was increased in hnRNPK-overexpressing cells. We found that hnRNPK regulated PLK1 expression through KH1- and KH2-dependent interactions with the 3'UTR of PLK1 mRNA. In addition, microRNA-149-3p (miR-149-3p) and miR-193b-5p suppressed PLK1 expression by targeting the 3'UTR of PLK1 mRNA. MicroRNA-elicited enrichment of PLK1 mRNA in Ago2 immunoprecipitation was altered by the presence or absence of hnRNPK. Furthermore, the deletion of the cytosine (C)-rich sequences of the 3'UTR of PLK1 mRNA abolished the decreased PLK1 expression observed via hnRNPK silencing and administration of miRNAs, a finding that suggests that hnRNPK shares this C-rich motif with miR-149-3p and miR-193b-5p. We also found that downregulation of PLK1 by either silencing hnRNPK or overexpression of miR-149-3p and miR-193b-5p decreased clonogenicity and induced apoptosis. Our findings from this study demonstrate that hnRNPK regulates PLK1 expression by competing with the PLK1-targeting miRNAs, miR-149-3p and miR-193b-5p.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼