http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Xu, Shengjie,Tang, Yujia,Chen, Kejie,Zhang, Zongke,Ma, Tao,Tang, Wenyong The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.1
The pressure responsiveness property of a skirt-cushion system, which is closely related to the overall performance of Air Cushion Vehicles (ACVs), has always been the difficulty and challenging problem involving cushion aerodynamics and flexible skirt dynamics. Based on a widely used bag and finger skirt-cushion system, the pressure responsiveness properties are investigated numerically. The physical process and mechanism are analyzed and a numerical method for evaluating the pressure responsiveness property is proposed. A cushion-skirt information communication platform is also presented for interchanging the force and the skirt configuration between cushion aerodynamics and flexible skirt dynamics. The pressure responsiveness of a typical skirt-cushion system is calculated and the results demonstrate that the pressure responsiveness property helps alleviate the influence of the cushion height changing on the overall performance of ACVs. Finally, the influences of skirt geometrical and cushion aerodynamic parameters on the pressure responsiveness properties are discussed systematically, giving insight into the design of skirt-cushion systems.
Xu, Shengjie,Tang, Yujia,Chen, Kejie,Zhang, Zongke,Ma, Tao,Tang, Wenyong The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.-
The pressure responsiveness property of a skirt-cushion system, which is closely related to the overall performance of Air Cushion Vehicles (ACVs), has always been the difficulty and challenging problem involving cushion aerodynamics and flexible skirt dynamics. Based on a widely used bag and finger skirt-cushion system, the pressure responsiveness properties are investigated numerically. The physical process and mechanism are analyzed and a numerical method for evaluating the pressure responsiveness property is proposed. A cushion-skirt information communication platform is also presented for interchanging the force and the skirt configuration between cushion aerodynamics and flexible skirt dynamics. The pressure responsiveness of a typical skirt-cushion system is calculated and the results demonstrate that the pressure responsiveness property helps alleviate the influence of the cushion height changing on the overall performance of ACVs. Finally, the influences of skirt geometrical and cushion aerodynamic parameters on the pressure responsiveness properties are discussed systematically, giving insight into the design of skirt-cushion systems.