RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Bonding and debonding behavior of FRP sheets under fatigue loading

        Iwashita, Kentaro,Wu, Zhishen,Ishikawa, Takashi,Hamaguchi, Yasumasa,Suzuki, Toshio The Korean Society for Composite Materials 2007 Advanced composite materials Vol.16 No.1

        The purpose of this study is to improve the examining and understanding of the bonding behavior of Fiber Reinforced Polymer (FRP) sheets bonded to concrete blocks and steel plates under fatigue loading. First, a series of experimental investigations is summarized in the paper. The fatigue behavior of bonding surface between FRP sheets and concrete is finally characterized by the conducted P-S-N diagram representing the relationship among the probability of FRP debonding (P), the bond stress amplitudes (S), and the number of cycles (N) at debonding on a semi-logarithmic scale. The different debonding modes for various fracturing surface are also investigated and evaluated.

      • SCIESCOPUS

        Damage identification using chaotic excitation

        Wan, Chunfeng,Sato, Tadanobu,Wu, Zhishen,Zhang, Jian Techno-Press 2013 Smart Structures and Systems, An International Jou Vol.11 No.1

        Vibration-based damage detection methods are popular for structural health monitoring. However, they can only detect fairly large damages. Usually impact pulse, ambient vibrations and sine-wave forces are applied as the excitations. In this paper, we propose the method to use the chaotic excitation to vibrate structures. The attractors built from the output responses are used for the minor damage detection. After the damage is detected, it is further quantified using the Kalman Filter. Simulations are conducted. A 5-story building is subjected to chaotic excitation. The structural responses and related attractors are analyzed. The results show that the attractor distances increase monotonously with the increase of the damage degree. Therefore, damages, including minor damages, can be effectively detected using the proposed approach. With the Kalman Filter, damage which has the stiffness decrease of about 5% or lower can be quantified. The proposed approach will be helpful for detecting and evaluating minor damages at the early stage.

      • KCI등재후보

        Damage identification using chaotic excitation

        Chunfeng Wan,Tadanobu Sato,Zhishen Wu,Jian Zhang 국제구조공학회 2013 Smart Structures and Systems, An International Jou Vol.11 No.1

        Vibration-based damage detection methods are popular for structural health monitoring. However, they can only detect fairly large damages. Usually impact pulse, ambient vibrations and sine-wave forces are applied as the excitations. In this paper, we propose the method to use the chaotic excitation to vibrate structures. The attractors built from the output responses are used for the minor damage detection. After the damage is detected, it is further quantified using the Kalman Filter. Simulations are conducted. A 5-story building is subjected to chaotic excitation. The structural responses and related attractors are analyzed. The results show that the attractor distances increase monotonously with the increase of the damage degree. Therefore, damages, including minor damages, can be effectively detected using the proposed approach. With the Kalman Filter, damage which has the stiffness decrease of about 5% or lower can be quantified. The proposed approach will be helpful for detecting and evaluating minor damages at the early stage.

      • KCI등재

        Optimal layout of long-gauge sensors for deformation distribution identification

        Jian Zhang,Qingqing Zhang,Qi Xia,Zhishen Wu 국제구조공학회 2016 Smart Structures and Systems, An International Jou Vol.18 No.3

        Structural deflection can be identified from measured strains from long gague sensors, but the sensor layout scheme greatly influences on the accuracy of identified resutls. To determine the optimal sensor layout scheme for accurate deflection identification of the tied arch bridge, the method of optimal layout of long-gauge fiber optic sensors is studied, in which the characteristic curve is first developed by using the bending macro-strain curve under multiple target load conditions, then optimal sensor layout scheme with different number of sensors are determined. A tied arch bridge is studied as an example to verify the effectiveness and robustness of the proposed method for static and dynamic deflection identification.

      • KCI등재

        Bond Behavior of Basalt Fiber-Reinforced Polymer Bars Embedded in Concrete Under Mono-tensile and Cyclic Loads

        Xia Liu,Xin Wang,Kangyu Xie,Zhishen Wu,Feng Li 한국콘크리트학회 2020 International Journal of Concrete Structures and M Vol.14 No.3

        This study evaluates the static and fatigue bond behavior in basalt fiber-reinforced polymer (BFRP) bars embedded in concrete. For bond behavior under a mono-tensile load, BFRP bars with four types of surface patterns (round, rectangular, cross-winding, and spiral-winding) were adopted, and 20 groups of rib parameters were introduced for round-type BFRP bars. The bond-slip relationships and the influences of the above parameters on bond behavior were investigated. An analytical model for simulating the relationships of full bond slip was studied by data fitting. For bond behavior under cyclic loads, the relationship between stress levels and the number of cycles was investigated, and the slip of round-ribbed BFRP bars was studied with respect to the number of cycles. The results showed that the rectangular, cross-winding, and spiral-winding ribbed bars experienced serious wear, and that the average bond strength was approximately 80.6% of that of the round-ribbed bars. Thus, the bond behavior of the round rib is superior to those of the other surfaces. In addition, a bond–slip constitutive model for a BFRP bar is proposed, representing four main stages: a micro-slip stage, a slip stage, a descending stage, and a residual stage. Under cyclic loads, an equation was proposed for predicting fatigue life with a regression coefficient of 0.880, and a development law of slip was characterized as three stages: the linear increase stage, the steady increase stage, and the sharp increase stage, respectively.

      • KCI등재

        Preparation of Cobalt Ferrite Nanoparticle-Decorated Boron Nitride Nanosheet Flame Retardant and Its Flame Retardancy in Epoxy Resin

        Qiaoran Zhang,Zhiwei Li,Xiaohong Li,Laigui Yu,Zhijun Zhang,Zhishen Wu 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.5

        Boron nitride nanosheet (BNNS) decorated with cobalt ferrite nanoparticle (CFN) to afford CFN-BNNS nanohybrid was prepared via a simple hydrothermal route and was well characterized. Subsequently, the as-prepared CFN-BNNS nanohybrid was incorporated into epoxy resin (EP) with the introduction of a weak rotary magnetic field to achieve order orientation, in order to reduce the fire risk and toxic hazards using enhanced shielding effect of BNNS upon combustion. Findings demonstrate that the CFN-BNNS nanohybrid is composed of CFN nanoparticle uniformly dispersed on BNNS surface. Thermal analysis and cone calorimeter data show that the CFN-BNNS nanofiller among EP matrix contributes to improving the char residues and mechanical properties of EP and reducing its fire risk as well as toxic hazards, especially the ordered one is advantageous over the disordered one in reducing the fire risk and toxic hazard. This is because, on the one hand, the orderly aligned BNNS as the physical barrier can more effectively prevent the transfer and diffusion of oxygen and heat. On the other hand, CFN can catalyze the degradation of EP to afford excessive chars on polymer surface; and it is also liable to decomposition during combustion, thereby generating ferrite species to promote EP degradation as well as cobalt species to enhance the oxidation of CO.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼