RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

        Chuang, Zhenju,Liu, Shewen,Lu, Yu The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.1

        This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

      • SCIESCOPUSKCI등재

        Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

        Chuang, Zhenju,Liu, Shewen,Lu, Yu The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.-

        This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

      • SCIESCOPUSKCI등재

        Ice forces acting on towed ship in level ice with straight drift. Part I: Analysis of model test data

        Zhou, Li,Chuang, Zhenju,Ji, Chunyan The Society of Naval Architects of Korea 2018 International Journal of Naval Architecture and Oc Vol.10 No.1

        A series of tests in an ice tank was carried out using a model-scale ship to investigate the ice loading process. The ship model Uikku was mounted on a rigid carriage and towed through a level ice field in the ice tank of the Marine Technology Group at Aalto University. The carriage speed and ice thickness were varied. In this paper, ice loading process was described and the corresponding ice forces on the horizontal plane were analysed. A new method is proposed to decompose different ice force components from the total ice forces measured in the model tests. This analysis method is beneficial to understanding contributions of each force component and modelling of ice loading on hulls. The analysed experimental results could be used for comparison with further numerical simulations.

      • SCIESCOPUSKCI등재

        Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation

        Zhou, Li,Chuang, Zhenju,Bai, Xu The Society of Naval Architects of Korea 2018 International Journal of Naval Architecture and Oc Vol.10 No.2

        A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

      • KCI등재

        Ice forces acting on towed ship in level ice with straight drift. Part I: Analysis of model test data

        Li Zhou,Zhenju Chuang,Chunyan Ji 대한조선학회 2018 International Journal of Naval Architecture and Oc Vol.10 No.1

        A series of tests in an ice tank was carried out using a model-scale ship to investigate the ice loading process. The ship model Uikku was mounted on a rigid carriage and towed through a level ice field in the ice tank of the Marine Technology Group at Aalto University. The carriage speed and ice thickness were varied. In this paper, ice loading process was described and the corresponding ice forces on the horizontal plane were analysed. A new method is proposed to decompose different ice force components from the total ice forces measured in the model tests. This analysis method is beneficial to understanding contributions of each force component and modelling of ice loading on hulls. The analysed experimental results could be used for comparison with further numerical simulations.

      • KCI등재

        Ice forces acting on towed ship in level ice with straight drift. Part II:Numerical simulation

        Li Zhou,Zhenju Chuang,Xu Bai 대한조선학회 2018 International Journal of Naval Architecture and Oc Vol.10 No.2

        A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼