RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply

        Zhenchao Yang,Zhengyan Wang,Chengcheng Yang,Zhao Yang,Hongquan Li,Yongjun Wu 한국유전학회 2019 Genes & Genomics Vol.41 No.10

        Background Maize is an important crop in the world, nitrogen stress severely reduces maize yield. Although a large number of studies have identified the expression changes of microRNAs (miRNAs) under N stress in several species, the miRNAs expression patterns of N-deficient plants under N resupply remain unclear. Objective The primary objective of this study was to identify miRNAs in response to nitrogen stress and understand relevant physiological changes in nitrogen-deficient maize after nitrogen resupply. Methods Physiological parameters were measured to study relevant physiological changes under different nitrogen conditions. Small RNA sequencing and qRT-PCR analysis were performed to understand the response of miRNAs under different nitrogen conditions. Results The content of chlorophyll, soluble protein and nitrate nitrogen decreased than CK by 0.52, 0.49 and 0.82 times after N deficiency treatment and increased than ND by 0.52, 1.36 and 0.65 times after N resupply, respectively. Conversely, the activity of superoxide dismutase (SOD) and peroxidase (POD) increased by 0.67 and 1.64 times than CK after N deficiency, respectively, and decreased by 0.09 and 0.35 times than ND after N resupply. A total of 226 known miRNAs were identified by sRNA sequencing; 106 miRNAs were differentially expressed between the control and N-deficient groups, and 103 were differentially expressed between the N-deficient and N-resupply groups (P < 0.05). Real-time quantitative PCR (qPCR) was used to further validate and analyze the expression of the identified miRNAs. A total of 1609 target genes were identified by target prediction, and some differentially expressed miRNAs were predicted to target transcription factors and functional proteins. Gene Ontology (GO) analysis was used to determine the biological function of these targets and revealed that some miRNAs, such as miR169, miR1214, miR2199, miR398, miR408 and miR827 might be involved in nitrogen metabolism regulation. Conclusion Our study comprehensively provides important information on miRNA functions and molecular mechanisms in response to N stress. These findings may assist to improve nitrogen availability in plants.

      • KCI등재
      • SCIESCOPUSKCI등재

        Differential Expression of PPARγ, FASN, and ACADM Genes in Various Adipose Tissues and Longissimus dorsi Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle

        Ji, Shuang,Yang, Runjun,Lu, Chunyan,Qiu, Zhengyan,Yan, Changguo,Zhao, Zhihui Asian Australasian Association of Animal Productio 2014 Animal Bioscience Vol.27 No.1

        The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), fatty acid synthase (FASN), and Acyl-CoA dehydrogenase (ACADM), which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of $PPAR{\gamma}$, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD) in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR). The result showed that $PPAR{\gamma}$ gene expression was significantly higher in adipose tissue than in LD in both breeds. $PPAR{\gamma}$ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p<0.05) in Yanbian yellow cattle, and was significantly higher in subcutaneous fat in Yan yellow cattle than that in Yanbian yellow cattle. On the other hand, FASN mRNA expression levels in subcutaneous fat and abdominal fat in Yan yellow cattle were significantly higher than that in Yanbian yellow cattle. Interestingly, ACADM gene shows greater fold changes in LD than in adipose tissues in Yan yellow cattle. Furthermore, the expressions of these three genes in lung, colon, kidney, liver and heart of Yanbian yellow cattle and Yan yellow cattle were also investigated. The results showed that the highest expression levels of $PPAR{\gamma}$ and FASN genes were detected in the lung in both breeds. The expression of ACADM gene in kidney and liver were higher than that in other organs in Yanbian yellow cattle, the comparison was not statistically significant in Yan yellow cattle.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼