RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Edge-clamped two-way slabs containing low-ductility steel

        Zafer Sakka,R. Ian Gilbert 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.78 No.6

        This paper describes a series of full range load tests on two-way, edge-clamped reinforced concrete slab panels containing either Class L WWF or Class N deformed bars. Five rectangular slab panels were tested each with two adjacent fully restrained edges and two free edges. A point support was included under the corner of each panel at the intersection of the two free edges. Each slab specimen was loaded by four transverse loads applied symmetrically in the mid-panel region by a deformation-controlled actuator in a stiff testing frame. The continuous edge supports were provided by clamping two adjacent edges in a carefully designed and constructed testing frame. The slabs were instrumented with load cells to measure applied forces and reactions, strain gauges to measure strain in the steel reinforcement and on the concrete surfaces, linear variable displacement transducers and lasers to measure deflections at all stages of loading. The results of the tests are presented and evaluated, with particular emphasis on the strength, ductility and failure mode of the slabs.

      • KCI등재

        Numerical investigation on the structural behavior of two-way slabs reinforced with low ductility steel

        Zafer Sakka,R. Ian Gilbert 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.3

        A numerical investigation of the impact of steel ductility on the strength and ductility of two-way corner and edge-supported concrete slabs containing low ductility welded wire fabric is presented. A finite element model was developed for the investigation and the results of a series of concurrent laboratory experiments were used to validate the numerical solution. A parametric investigation was conducted using the numerical model to investigate the various factors that influence the structural behavior at the strength limit state. Different values of steel uniform elongation and ultimate to yield strength ratios were considered. The results are presented and evaluated, with emphasis on the strength, ductility, and failure mode of the slabs. It was found that the ductility of the flexural reinforcement has a significant impact on the ultimate load behavior of two-way corner-supported slabs, particularly when the reinforcement was in the form of cold drawn welded wire fabric. However, the impact of the low ductility WWF has showed to be less prominent in structural slabs with higher levels of structural indeterminacy. The load-deflection curves of corner-supported slabs containing low ductility WWF are brittle, and the slabs have little ability to undergo plastic deformation at peak load.

      • SCIESCOPUS

        Numerical investigation on the structural behavior of two-way slabs reinforced with low ductility steel

        Sakka, Zafer,Gilbert, R. Ian Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.3

        A numerical investigation of the impact of steel ductility on the strength and ductility of two-way corner and edge-supported concrete slabs containing low ductility welded wire fabric is presented. A finite element model was developed for the investigation and the results of a series of concurrent laboratory experiments were used to validate the numerical solution. A parametric investigation was conducted using the numerical model to investigate the various factors that influence the structural behavior at the strength limit state. Different values of steel uniform elongation and ultimate to yield strength ratios were considered. The results are presented and evaluated, with emphasis on the strength, ductility, and failure mode of the slabs. It was found that the ductility of the flexural reinforcement has a significant impact on the ultimate load behavior of two-way corner-supported slabs, particularly when the reinforcement was in the form of cold drawn welded wire fabric. However, the impact of the low ductility WWF has showed to be less prominent in structural slabs with higher levels of structural indeterminacy. The load-deflection curves of corner-supported slabs containing low ductility WWF are brittle, and the slabs have little ability to undergo plastic deformation at peak load.

      • SCIESCOPUS

        Reliability-based assessment of damaged concrete buildings

        Sakka, Zafer I.,Assakkaf, Ibrahim A.,Qazweeni, Jamal S. Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.6

        Damages in concrete structures due to aging and other factors could be a serious and immense matter. Making the best selection of the most viable and practical repairing and strengthening techniques are relatively difficult tasks using traditional methods of structural analyses. This is due to the fact that the traditional methods used for assessing aging structure are not fully capable when considering the randomness in strength, loads and cost. This paper presents a reliability-based methodology for assessing reinforced concrete members. The methodology of this study is based on probabilistic analysis, using statistics of the random variables in the performance function equations. Principles of reliability updating are used in the assessment process, as new information is taken into account and combined with prior probabilistic models. The methodology can result in a reliability index ${\beta}$ that can be used to assess the structural component by comparing its value with a standard value. In addition, these methods result in partial safety factor values that can be used for the purpose of strengthening the R/C elements of the existing structure. Calculations and computations of the reliability indices and the partial safety factors values are conducted using the First-order Reliability Method and Monte Carlo simulation.

      • KCI등재

        Reliability-based assessment of damaged concrete buildings

        Zafer I. Sakka,Ibrahim A. Assakkaf,Jamal S. Qazweeni 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.6

        Damages in concrete structures due to aging and other factors could be a serious and immense matter. Making the best selection of the most viable and practical repairing and strengthening techniques are relatively difficult tasks using traditional methods of structural analyses. This is due to the fact that the traditional methods used for assessing aging structure are not fully capable when considering the randomness in strength, loads and cost. This paper presents a reliability-based methodology for assessing reinforced concrete members. The methodology of this study is based on probabilistic analysis, using statistics of the random variables in the performance function equations. Principles of reliability updating are used in the assessment process, as new information is taken into account and combined with prior probabilistic models. The methodology can result in a reliability index β that can be used to assess the structural component by comparing its value with a standard value. In addition, these methods result in partial safety factor values that can be used for the purpose of strengthening the R/C elements of the existing structure. Calculations and computations of the reliability indices and the partial safety factors values are conducted using the First-order Reliability Method and Monte Carlo simulation.

      • Condition assessment of aged underground water tanks-Case study

        Zafer Sakka,Ali Saleh,Thamer Al-Yaqoub,Hasan Karam,Shaikha AlSanad,Jamal Al-Qazweeni,Mohammad Mosawi,Husain Al-Baghli 국제구조공학회 2024 Structural Engineering and Mechanics, An Int'l Jou Vol.90 No.5

        This paper presents the methodology and results for the investigation of the structural safety of 40 aged underground water tanks to support the weight of photovoltaic (PV) systems that were supposed to be placed on their roof reinforced concrete (RC) slabs. The investigation procedure included (1) review of available documents; (2) visual inspection of the roof RC slabs; (3) carrying out a series of nondestructive (ND) tests; and (4) analysis of results. Out of the 40 tanks, eleven failed the visual inspection phase and were discarded from further investigation. The roof RC slabs of the tanks that passed the visual inspection were subjected to a series of ND tests that included infrared thermography, impact echo, ultrasonic pulse velocity (UPV), Schmidt hammer, concrete core compressive strength, and water-soluble chloride content. The NDT results proved that eight more tanks were not suitable to support the PV systems. Based on the results of the visual inspection and testing, a probabilistic decision-making criterion was established to reach a decision regarding the structural integrity of the roof slabs. The study concluded that the condition of the drainage filter was essential in protecting the tanks and its intact presence can be used as a strong indication of the structural integrity of the roof RC slabs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼