RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of microwave assisted oxidative desulfurization of petroleum oils: A review

        Hui Shang,Zhichang Liu,Haichao Zhang,Wei Du 한국공업화학회 2013 Journal of Industrial and Engineering Chemistry Vol.19 No.5

        This paper provides a general overview of microwave applications in petroleum oxidative desulfurization (ODS). It was concluded that, as compared with conventional heating technologies,milder reaction conditions could be used and higher ODS rate could be achieved under microwave treatment. It was also found that microwave power level, treatment time, temperature, oxidizing agent dosage, microwave equipment and catalyst are the key operating factors influencing the ODS efficiency. A best removal rate of 96% achieved for diesel. The main challenges are developing high efficiency, novel techniques and apparatuses to remove sulfur from oils in a commercial process.

      • KCI등재

        Development of microwave induced hydrodesulfurization of petroleum streams: A review

        Hui Shang,Wei Du,Zhichang Liu,Haichao Zhang 한국공업화학회 2013 Journal of Industrial and Engineering Chemistry Vol.19 No.4

        This paper provides a general overview of microwave applications in hydrodesulfurization (HDS) of various petroleum streams. Deep desulfurization is required for petroleum streams due to stringent sulfur specifications to meet environmental norms. The progress achieved during recent years in catalyst-based HDS technologies is illustrated by using microwaves due to its unique selective and volumetric heating capacity. Based on literature reports, it may be concluded that microwave assisted desulfurization of petroleum streams can be successfully performed under less severe conditions, with significant advantages. This is expected to result in savings in utilities, catalyst consumption, eventually leading to increased fuel yields.

      • Controlling Switching in Bistable [2]Catenanes by Combining Donor–Acceptor and Radical–Radical Interactions

        Zhu, Zhixue,Fahrenbach, Albert C.,Li, Hao,Barnes, Jonathan C.,Liu, Zhichang,Dyar, Scott M.,Zhang, Huacheng,Lei, Juying,Carmieli, Raanan,Sarjeant, Amy A.,Stern, Charlotte L.,Wasielewski, Michael R.,Sto American Chemical Society 2012 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.134 No.28

        <P>Two redox-active bistable [2]catenanes composed of macrocyclic polyethers of different sizes incorporating both electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4′-bipyridinium (BIPY<SUP>2+</SUP>) units, interlocked mechanically with the tetracationic cyclophane cyclobis(paraquat-<I>p</I>-phenylene) (CBPQT<SUP>4+</SUP>), were obtained by donor–acceptor template-directed syntheses in a threading-followed-by-cyclization protocol employing Cu(I)-catalyzed azide–alkyne 1,3-dipolar cycloadditions in the final mechanical-bond forming steps. These bistable [2]catenanes exemplify a design strategy for achieving redox-active switching between two translational isomers, which are driven (i) by donor–acceptor interactions between the CBPQT<SUP>4+</SUP> ring and DNP, or (ii) radical–radical interactions between CBPQT<SUP>2(•+)</SUP> and BIPY<SUP>•+</SUP>, respectively. The switching processes, as well as the nature of the donor–acceptor interactions in the ground states and the radical–radical interactions in the reduced states, were investigated by single-crystal X-ray crystallography, dynamic <SUP>1</SUP>H NMR spectroscopy, cyclic voltammetry, UV/vis spectroelectrochemistry, and electron paramagnetic resonance (EPR) spectroscopy. The crystal structure of one of the [2]catenanes in its trisradical tricationic redox state provides direct evidence for the radical–radical interactions which drive the switching processes for these types of mechanically interlocked molecules (MIMs). Variable-temperature <SUP>1</SUP>H NMR spectroscopy reveals a degenerate rotational motion of the BIPY<SUP>2+</SUP> units in the CBPQT<SUP>4+</SUP> ring for both of the two [2]catenanes, that is governed by a free energy barrier of 14.4 kcal mol<SUP>–1</SUP> for the larger catenane and 17.0 kcal mol<SUP>–1</SUP> for the smaller one. Cyclic voltammetry provides evidence for the reversibility of the switching processes which occurs following a three-electron reduction of the three BIPY<SUP>2+</SUP> units to their radical cationic forms. UV/vis spectroscopy confirms that the processes driving the switching are (i) of the donor–acceptor type, by the observation of a 530 nm charge-transfer band in the ground state, and (ii) of the radical–radical ilk in the switched state as indicated by an intense visible absorption (ca. 530 nm) and near-infrared (ca. 1100 nm) bands. EPR spectroscopic data reveal that, in the switched state, the interacting BIPY<SUP>•+</SUP> radical cations are in a fast exchange regime. In general, the findings lay the foundations for future investigations where this radical–radical recognition motif is harnessed in bistable redox-active MIMs in order to achieve close to homogeneous populations of co-conformations in both the ground and switched states.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/2012/jacsat.2012.134.issue-28/ja3037355/production/images/medium/ja-2012-037355_0011.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/ja3037355'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼