RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of a variable temperature mechanical loading device for in situ neutron scattering measurements

        Yunlai Zhao,Shizhong Zhang,Hongwei Zhao,Guang’ai Sun,Yao Xu 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.8

        Understanding the phase transformation and failure mechanism of NiTi shape memory alloys under variable environments of high and low temperatures is critical to the establishment of constitutive properties and to the realization of controllable design. Information regarding the correlation between the phase transformation and deformation can be obtained by in situ neutron scattering measurements. Therefore, a variable temperature mechanical loading device is designed, which can be used for mechanical loading and in situ neutron scattering measurements in a variable temperature environment. Specifically, the device can achieve precise temperature control with a temperature change from -55 °C to 200 °C in a protective atmosphere. The rated load in the axial direction is 6 kN, and the maximum displacement of the unilateral grip is larger than 30 mm. In situ neutron scattering measurements can be performed through neutron windows, and the strain can be measured by digital image correlation technology. Moreover, the force sensor is calibrated to improve test precision. Through an evaluation of temperature uncertainty, the temperature measurement performance is estimated. Tensile tests of the NiTi alloy at variable temperatures are carried out, and preliminary results are given. The four deformation stages of the NiTi alloy can be seen from the stressstrain curve, which corresponds to the existing results. This demonstrates that the designed variable temperature mechanical loading device can supply the testing demands. The device provides a new way to study the relationship between the phase transformation and mechanical properties of NiTi shape memory alloys at variable temperatures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼