RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Prediction of egg freshness during storage using electronic nose

        Yimenu, Samuel M.,Kim, J. Y.,Kim, B. S. Poultry Science Association, Inc. 2017 Poultry science Vol.96 No.10

        <P><B>Abstract</B></P><P>The aim of the present study was to investigate the potential of a fast gas chromatography (GC) e-nose for freshness discrimination and for prediction of storage time as well as sensory and internal quality changes during storage of hen eggs. All samples were obtained from the same egg production farm and stored at 20 °C for 20 d. Egg sampling was conducted every 0, 3, 6, 9, 12, 16, and 20 d. During each sampling time, 4 egg cartons (each containing 10 eggs) were randomly selected: one carton for Haugh units, one carton for sensory evaluation and 2 cartons for the e-nose experiment. The e-nose study included 2 independent test sets; calibration (35 samples) and validation (28 samples). Every sampling time, 5 replicates were prepared from one egg carton for calibration samples and 4 replicates were prepared from the remaining egg carton for validation samples. Sensors (peaks) were selected prior to multivariate chemometric analysis; qualitative sensors for principal component analysis (PCA) and discriminant factor analysis (DFA) and quantitative sensors for partial least square (PLS) modeling. PCA and DFA confirmed the difference in volatile profiles of egg samples from 7 different storage times accounting for a total variance of 95.7% and 93.71%, respectively. Models for predicting storage time, Haugh units, odor score, and overall acceptability score from e-nose data were developed using calibration samples by PLS regression. The results showed that these quality indices were well predicted from the e- nose signals, with correlation coefficients of <I>R</I><SUP>2</SUP> = 0.9441, <I>R</I><SUP>2</SUP> = 0.9511, <I>R</I><SUP>2</SUP> = 0.9725, and <I>R</I><SUP>2</SUP> = 0.9530 and with training errors of 0.887, 1.24, 0.626, and 0.629, respectively. As a result of ANOVA, most of the PLS model results were not significantly (<I>P</I> > 0.05) different from the corresponding reference values. These results proved that the fast GC electronic nose has the potential to assess egg freshness and feasibility to predict multiple egg freshness indices during its circulation in the supply chain.</P>

      • SCISCIESCOPUS

        Kinetic modeling impacts of relative humidity, storage temperature, and air flow velocity on various indices of hen egg freshness

        Yimenu, Samuel Mezemir,Koo, Junemo,Kim, Ji-Young,Kim, Jong-Hoon,Kim, Byeong-Sam Poultry Science Association Inc. 2018 Poultry science Vol.97 No.12

        <P><B>ABSTRACT</B></P><P>Storage experiments were conducted to study the impacts of the environmental factors (temperature (T) (°C), relative humidity (RH) (%), and air flow velocity (VEL) (m/s)) on the hen egg quality indices and to develop kinetic model(s) for freshness prediction. VEL had negligible effect on relative weight loss (RWL). All factors had significant effect on Haugh unit (HU) but only T impacted <I>S</I>-ovalbumin content (SO). Fitted regression lines for the RWL and the HU had determination coefficient (R<SUP>2</SUP>) of 0.996 and 0.95, respectively. The HU equation reflected impacts of all factors, and the impact of temperature shift-up increases the HU decrease, where the impact decreases with RH and increases with flow velocity. Kinetic model for SO was developed using isothermal (5, 10, 20, 25, and 28.5°C) conditions and validated under dynamic (10 to 20 and 10 to 28.5°C) conditions. The accuracy and bias factor values were 1.091 and 0.917 at 10 to 20°C and 1.206 and 1.204 at 10 to 28.5°C, respectively, which indicates that the SO model performed well. The SO model can be used along with the HU model (as the HU model can reflect the combined effect of temperature, humidity, and air flow velocity) to predict hen egg freshness at 5 to 28.5°C storage condition.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼