RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Fusion of Feature Extraction and Feature Selection Technique for Network Intrusion Detection

        Yasir Hamid,M.Sugumaran,Ludovic Journaux 보안공학연구지원센터 2016 International Journal of Security and Its Applicat Vol.10 No.8

        With varied and widespread attacks on information systems, intrusion detection systems (IDS) have become an indispensable part of security policy for protecting data. IDS monitor event logs and network traffic to uncover suspicious connections that deviate from the regular profile and identify them as threats or attacks. Like most of the cases the dataset used for intrusion detection i.e., KDD99 suffers two problems: imbalanced class distribution and curse of dimensionality. In this work SMOTE has been used for balancing the dataset and once balanced, Principal Component Analysis (PCA) has been used to extract the features. And after that on the transformed dataset Correlation based Feature Selection (CFS) is used to select a subset of important features. The reduced dimension dataset is tested with Support Vector Machines (SVM). Obtained results demonstrate improved detection accuracy, computational efficiency with minimal false alarms and less system resources utilization

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼