RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Graphene and graphene‑like carbon nanomaterials‑based electrochemical biosensors for phytohormone detection

        Meiqing Yang,Lu Wang,Haozi Lu,Qizhi Dong,Huimin Li,Song Liu 한국탄소학회 2023 Carbon Letters Vol.33 No.5

        Phytohormones (plant hormones) are a class of small-molecule organic compounds synthesized de novo in plants. Although phytohormones are present in trace amounts, they play a key role in regulating plant growth and development, and in response to external stresses. Therefore, the analysis and monitoring of phytohormones have become an important research topic in precision agriculture. Among the various detection methods, electrochemical analysis is favored because of its simplicity, rapidity, high sensitivity, and in-situ monitoring. Graphene and graphene-like carbon materials have abundant sources, exhibiting large specific surface area, and excellent physicochemical properties. Thus, they have been widely used in the preparation of electrochemical biosensors for phytohormone detection. In this paper, the research advances of electrochemical sensors based on graphene and graphene-like carbon materials for phytohormone detection have been reviewed. The properties of graphene and graphene-like carbon materials are first introduced. Then, the research advances of electrochemical biosensors (including conventional electrochemical sensors, photoelectrochemical sensors, and electrochemiluminescence sensors) based on graphene and graphene-like carbon materials for phytohormone detection is summarized, with emphasis on their sensing strategies and the roles of graphene and graphene-like carbon materials in them. Finally, the development of electrochemical sensors based on graphene and graphene-like carbon materials for phytohormone detection is prospected.

      • KCI등재

        Analysis of the Interference Effects in CMOS Image Sensors Caused by Strong Electromagnetic Pulses

        Yang Zhikang,Wen Lin,Li Yudong,Zhou Dong,Wang Xin,Ding Rui,Zhong Meiqing,Meng Cui,Fang Wenxiao,Guo Qi 한국전자파학회 2024 Journal of Electromagnetic Engineering and Science Vol.24 No.2

        With the electromagnetic environment becoming increasingly complex, it is crucial to address the risk posed by electromagnetic pulse, which critically impairs the performance and reliability of electronic systems based on complementary metal oxide semiconductor (CMOS) image sensors. In this context, research on the failure types of CMOS image sensors in a high-power electromagnetic environment, caused by strong electromagnetic pulses and the rapid evaluation method of interference immunity, has garnered significant interest. This paper conducts electromagnetic pulse simulation experiments on CMOS image sensors to first study their failure types, such as image abnormalities and functional interruption, and then identify the corresponding failure criteria. Furthermore, this study builds on the small sample test evaluation method to investigate the interference threshold of functional interruptions in CMOS image sensors by calculating the failure probability at different field strengths. The obtained data were combined with the Weibull distribution function for fitting, the results of which found the interference threshold to be at 40.4 kV/m. The findings of this study provide a basis for evaluating the survivability of CMOS image sensors and their associated reinforcement technology in high-power electromagnetic environments.

      • KCI등재

        Advances in atomic layer deposited high-κ inorganic materials for gate dielectrics engineering of two-dimensional MoS2 field effect transistors

        Zhang Ling,Xing Houying,Yang Meiqing,Dong Qizhi,Li Huimin,Liu Song 한국탄소학회 2022 Carbon Letters Vol.32 No.5

        Molybdenum disulfide (MoS2) has been one of the most promising members of transition-metal dichalcogenides materials. Attributed to the excellent electrical performance and special physical properties, MoS2 has been broadly applied in semiconductor devices, such as field effect transistors (FETs). At present, the exploration of further improving the performance of MoS2-based FETs (such as increasing the carrier mobility and scaling) has encountered a bottleneck, and the application of high-κ gate dielectrics has become an effective approach to change this situation. Atomic layer deposition (ALD) enables high-quality integration of MoS2 and high-κ gate dielectrics at the atomic level. In this review, we summarize recent advances in the fabrication of two-dimensional MoS2 FETs using ALD high-κ materials as gate dielectrics. We first briefly discuss the research background of MoS2 FETs. Second, we expound the electrical and other essential properties of high-κ gate dielectrics, which are essential to the performance of MoS2 FETs. Finally, we focus on the advances in fabricating MoS2 FETs with ALD high-κ gate dielectrics on MoS2, as well as the optimized ALD processes. In addition, we also look forward to the development prospect of this field.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼