RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Chemo-Mechanical Manufacturing of Fused Silica by Combining Ultrasonic Vibration with Fixed-Abrasive Pellets

        Yaguo Li,Yongbo Wu,Libo Zhou,Masakazu Fujimoto,Jian Wang,Qiao Xu,Shoichi Sasaki,Masaaki Kemmochi 한국정밀공학회 2014 International Journal of Precision Engineering and Vol.15 No.5

        Vibration-assisted grinding, in which harder abrasives than materials to be machined are employed, has been a viable and effective approach to increasing material removal rate (MRR) and/or reducing surface roughness of ground surfaces. We transfer this ideology to fused silica polishing by incorporating ultrasonic vibration into recently developed fixed-abrasive pellets in an attempt to enhance MRR and/or to improve manufactured surface quality. A prototype ultrasonic vibrator, the heart of the polishing head, was designed and the related experimental work was performed on an in-house built setup in conjunction with the constructed head. The vibrator is devised for the generation of 2-D tool path despite using only one actuator in lieu of two actuators in conventional 2-D ultrasonic machining systems. We then combined the ultrasonic vibration with fixed abrasive polishing pellets to machine fused silica glass. Machining experiments reveal that MRR is considerably increased up to >50% upon the introduction of ultrasonic vibration (UV) whilst surface roughness is not degraded appreciably. It was also noted that a overwhelmingly greater deal of polishing debris was dispelled during ultrasonic vibration assisted polishing than conventional bound-abrasive polishing, which may account for the greater MRR in UV assisted polishing.

      • KCI등재

        Chemo-Mechanical Manufacturing of Fused Silica by Combining Ultrasonic Vibration with Fixed-Abrasive Pellets

        Yaguo Li,Yongbo Wu,Libo Zhou,Masakazu Fujimoto,Jian Wang,Qiao Xu,Shoichi Sasaki,Masaaki Kemmochi 한국정밀공학회 2012 International Journal of Precision Engineering and Vol. No.

        Vibration-assisted grinding, in which harder abrasives than materials to be machined are employed, has been a viable and effective approach to increasing material removal rate (MRR) and/or reducing surface roughness of ground surfaces. We transfer this ideology to fused silica polishing by incorporating ultrasonic vibration into recently developed fixed-abrasive pellets in an attempt to enhance MRR and/or to improve manufactured surface quality. A prototype ultrasonic vibrator, the heart of the polishing head, was designed and the related experimental work was performed on an in-house built setup in conjunction with the constructed head. The vibrator is devised for the generation of 2-D tool path despite using only one actuator in lieu of two actuators in conventional 2-D ultrasonic machining systems. We then combined the ultrasonic vibration with fixed abrasive polishing pellets to machine fused silica glass. Machining experiments reveal that MRR is considerably increased up to >50% upon the introduction of ultrasonic vibration (UV)whilst surface roughness is not degraded appreciably. It was also noted that a overwhelmingly greater deal of polishing debris was dispelled during ultrasonic vibration assisted polishing than conventional bound-abrasive polishing, which may account for the greater MRR in UV assisted polishing.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼