RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers

        Li, Xufan,Dong, Jichen,Idrobo, Juan C.,Puretzky, Alexander A.,Rouleau, Christopher M.,Geohegan, David B.,Ding, Feng,Xiao, Kai American Chemical Society 2017 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.139 No.1

        <P>Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this work, we explore a growth-etching-regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60 degrees with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Ait between Ga and Se. Our growth-etching-regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.</P>

      • KCI등재

        Integrated analysis of DNA methylome and transcriptome reveals SFRP1 and LIPG as potential drivers of ovarian cancer metastasis

        Jiani Yi,Mengting Wu,Zhihong Zheng,Qing Zhou,Xufan Li,Yan Lu,Pengyuan Liu 대한부인종양학회 2023 Journal of Gynecologic Oncology Vol.34 No.6

        Objective: More than 75% of ovarian cancer patients are diagnosed at advanced stages and die of tumor cell metastasis. This study aimed to identify new epigenetic and transcriptomic alterations associated with ovarian cancer metastasis. Methods: Two cell sublines with low- and high-metastasis potentials were derived from the ovarian cancer cell line A2780. Genome-wide DNA methylome and transcriptome profiling were carried out in these two sublines by Reduced Representation Bisulfite Sequencing and RNA-seq technologies. Cell-based assays were conducted to support the clinical findings. Results: There are distinct DNA methylation and gene expression patterns between the two cell sublines with low- and high-metastasis potentials. Integrated analysis identified 33 methylation-induced genes potentially involved in ovarian cancer metastasis. The DNA methylation patterns of two of them (i.e., SFRP1 and LIPG) were further validated in human specimens, indicating that they were hypermethylated and downregulated in peritoneal metastatic ovarian carcinoma compared to primary ovarian carcinoma. Patients with lower SFRP1 and LIPG expression tend to have a worse prognosis. Functionally, knockdown of SFRP1 and LIPG promoted cell growth and migration, whereas their overexpression resulted in the opposite effects. In particular, knockdown of SFRP1 could phosphorylate GSK3β and increase β-catenin expression, leading to deregulated activation of the Wnt/β-catenin signaling. Conclusion: Many systemic and important epigenetic and transcriptomic alterations occur in the progression of ovarian cancer. In particular, epigenetic silencing of SFRP1 and LIPG is a potential driver event in ovarian cancer metastasis. They can be used as prognostic biomarkers and therapeutic targets for ovarian cancer patients.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼