RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The bubble problem of the plasma facing material: A finite element study

        Xiaoyan Kang,Xiyue Cheng,Shuiquan Deng 한국원자력학회 2020 Nuclear Engineering and Technology Vol.52 No.10

        The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

      • KCI등재

        Robust, fatigue resistant, self-healing and antifreeze ionic conductive supramolecular hydrogels for wearable flexible sensors

        Jia Yang,Qiong Kang,Bin Zhang,Xiyu Tian,Shuzheng Liu,Gang Qin,Qiang Chen 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.115 No.-

        Ionic conductive hydrogel-based sensors have been capturing growing attention in various areas, but stillcannot satisfy the operating requirements of next generation wearable electronics. Herein, inspired bybiosystems, we demonstrate ionic conductive supramolecular hydrogels with simple one-step methodbased on salting-out effect and multiple hydrogen bond interactions. The supramolecular hydrogels exhibithigh toughness and strength, quick self-recovery, high sensitive sensing performance as well as goodself-healing, fatigue and frost resistances in mechanical and sensing properties, and can monitor largeand subtle movements and physiological activities of the human body sensitively, quickly and stably. Thus, it provides a convenient and promising way to obtain stretchable sensors of excellent comprehensiveproperties, which have tremendous application potential as wearable electronic devices in harshenvironments.

      • KCI등재

        Controlled fabrication and electrochemical corrosion behavior of ultrathin Ni-Cu alloy foil

        Linping Yu,Long Chen,Qizhi Chen,Luli Feng,Ziyi Xu,Bo Nan,Xiyue Kang,Yuehui He 한국공업화학회 2021 Journal of Industrial and Engineering Chemistry Vol.103 No.-

        Cost-effective ultrathin alloy foils (<20 lm) are highly expected with the development of electronicindustry and micro-system technology. In this paper, electrodeposition combined with vacuum sinteringis used to fabricate a Ni-Cu alloy foil with thickness of 12.0 (±0.2) lm. For the ultrathin Ni-Cu alloy foil, adensified structure without pores can be achieved by prolonging sintering duration at 900 ℃ for 3 h. Under the current density of 10 mA cm 2, 700 s is the optimal electrodeposition time to obtain the highesttensile strength (187 MPa) with the Ni content of 41.5 wt.% in the alloy foil. Compared with Cu foil, Ni-Cu alloy foil shows superior corrosion resistance in 3.5 wt.% NaCl solution and also HCl solutions (0.5 mol/L, 1.0 mol/L, 2.0 mol/L), respectively. The uniform composition and defect-free surface, excellent tensilestrength and corrosion resistance together exhibits the great application potential of the obtained Ni-Cualloy foil, which may provide an inspiration for future development of integrated electronic or medicaldevices.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼