RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Dislocation Damping and Defect Friction Damping in Magnesium: Molecular Dynamics Study

        Jingyu Zhai,Xinyuan Song,Anyang Xu,Yugang Chen,Qingkai Han 대한금속·재료학회 2021 METALS AND MATERIALS International Vol.27 No.6

        In this study, the molecular dynamics method was used to study the damping mechanism in Mg alloys at the atomic scale. The energy dissipated by the nucleation and motion of dislocations and by defects friction, and the effect of defects, such asvacancies, cracks, and grain boundaries, on them were studied. The study shows that different kinds of defect have differenteffects on the dislocation damping and defect friction damping. And then, the effect of strain amplitude and temperature ondamping capacity of Mg was studied. The result shows that the amplitude independent damping is caused by defect frictionand the amplitude dependent damping is mainly caused by the nucleation and motion of dislocation; the damping of Mgincreased exponentially with the temperature, and the damping peck appeared at 440 K is attributed to the appearance ofdislocations at the grain boundaries which may be caused by boundaries self-diffusion.

      • KCI등재

        Decision tree model to efficiently optimize the process conditions of carbonaceous mesophase prepared with coal tar

        Zhou Chunru,Wu Peng,Xu Xinyuan,Song Weina 한국탄소학회 2023 Carbon Letters Vol.33 No.2

        It is difficult to optimize the process parameters of directly preparing carbonaceous mesophase (CMs) by solvothermal method using coal tar as raw material. To solve this problem, a Decision Tree model for CMs preparation (DTC) was established based on the relationship between the process parameters and the yields of CMs. Then, the importance of variables in the preparation process for CMs was predicted, the relationship between experimental conditions and yields was revealed, and the preparation process conditions were also optimized by the DTC. The prediction results showed that the importance of the variables was raw material type, solvothermal temperature, solvothermal time, solvent amount, and additive type in order. And the optimized reaction conditions were as follows: coal tar was pretreated by decompress distillation and centrifugation, the solvent amount was 50.0 ml, the solvothermal temperature was 230 °C, and the reaction time was 5 h. These prediction results were consistent with the actual experimental results, and the error between the predicted yields and the actual yields was about − 1.1%. Furthermore, the prediction error of DTC method was within the acceptable range when the data sample sets were reduced to 100 sets. These results proved that the established DTC for chemical process optimization can effectively lessen the experimental workload and has high application value.

      • Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

        Xin Yuan,Hongyu Bai,Chen Sun,Qinqing Li,Yanfeng Song 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.3

        This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP platestrengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼