RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        An optimization framework of a parametric Octabuoy semi-submersible design

        Xie, Zhitian,Falzarano, Jeffrey The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.1

        An optimization framework using genetic algorithms has been developed towards an automated parametric optimization of the Octabuoy semi-submersible design. Compared with deep draft production units, the design of the shallow draught Octabuoy semi-submersible provides a floating system with improved motion characteristics, being less susceptible to vortex induced motions in loop currents. The relatively large water plane area results in a decreased natural heave period, which locates the floater in the wave period range with more wave energy. Considering this, the hull design of Octabuoy semi-submersible has been optimized to improve the floater's motion performance. The optimization has been conducted with optimized parameters of the pontoon's rectangular cross section area, the cone shaped section's height and diameter. Through numerical evaluations of both the 1st-order and 2nd-order hydrodynamics, the optimization through genetic algorithms has been proven to provide improved hydrodynamic performance, in terms of heave and pitch motions. This work presents a meaningful framework as a reference in the process of floating system's design.

      • SCIESCOPUSKCI등재

        An optimization framework of a parametric Octabuoy semi-submersible design

        Xie, Zhitian,Falzarano, Jeffrey The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.-

        An optimization framework using genetic algorithms has been developed towards an automated parametric optimization of the Octabuoy semi-submersible design. Compared with deep draft production units, the design of the shallow draught Octabuoy semi-submersible provides a floating system with improved motion characteristics, being less susceptible to vortex induced motions in loop currents. The relatively large water plane area results in a decreased natural heave period, which locates the floater in the wave period range with more wave energy. Considering this, the hull design of Octabuoy semi-submersible has been optimized to improve the floater's motion performance. The optimization has been conducted with optimized parameters of the pontoon's rectangular cross section area, the cone shaped section's height and diameter. Through numerical evaluations of both the 1st-order and 2nd-order hydrodynamics, the optimization through genetic algorithms has been proven to provide improved hydrodynamic performance, in terms of heave and pitch motions. This work presents a meaningful framework as a reference in the process of floating system's design.

      • A genetic algorithms optimization framework of a parametric shipshape FPSO hull design

        Xie, Zhitian,Falzarano, Jeffrey Techno-Press 2021 Ocean systems engineering Vol.11 No.4

        An optimization framework has been established and applied to a shipshape parametric FPSO hull design. A single point moored (SPM) shipshape floating system suffers a significant level of the roll motion in both the wave frequencies and low wave frequencies, which presents a coupling effect with the horizontal weathervane motion. To guarantee the security of the operating instruments installed onboard, a parametric hull design of an FPSO has been optimized with improved hydrodynamics performance. With the optimized parameters of the various hull stations' longitudinal locations, the optimization through Genetic Algorithms (GAs) has been proven to provide a significantly reduced level of the 1st-order and 2nd-order roll motion. This work presents a meaningful framework as a reference in the process of an SPM shipshape floating system's design.

      • A more efficient numerical evaluation of the green function in finite water depth

        Xie, Zhitian,Liu, Yujie,Falzarano, Jeffrey Techno-Press 2017 Ocean systems engineering Vol.7 No.4

        The Gauss-Legendre integral method is applied to numerically evaluate the Green function and its derivatives in finite water depth. In this method, the singular point of the function in the traditional integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. Using this new methodology, the Green function with the field and source points near the water surface can be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new method is investigated. The numerical results using a Gauss-Legendre integral method show good agreements with other numerical results of direct calculations and series form in the far field. Furthermore, the cases with the field and source points near the water surface are also considered. Considering the computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain the accurate numerical results of the Green function and its derivatives in finite water depth and can be adopted in the near field.

      • Behaviors of RPC-filled double skin steel tubular stub columns under axial compression loading

        Wenming Hao,Qifang Xie,Yun Zhang,Dunfeng Xu,Zhitian Zhang 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.40 No.6

        This paper presents the compressive behaviors of RPC-filled double skin steel tubular (RFDST) stub columns. Six RFDST stub column specimens, with different hollow ratios and constraint coefficients, were tested under axial compression loading. The compressive behaviors, such as failure mode, strength and ductility, were analyzed. It is found that the failure mode of RPC filled steel tube (RFST) stub column is shear failure, while RFDST stub columns are waist drum failure. The load deformation curves of RFDST specimens with different hollow ratio and constraint coefficient show different characteristics. RFDST specimens exhibit high bearing capacity and good ductility. Based on the test results of existing RFDST stub columns, a design formula for predicting the ultimate bearing capacity is given. A finite element model is also presented to analyze the compressive behaviors, and good agreement is obtained. The influences of hollow ratio and constraint coefficient on the ultimate bearing capacity are discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼