RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Association of a Single Codon Deletion in Bone Morphogenetic Protein 15 Gene with Prolificacy in Small Tail Han Sheep

        Guo, W.,Chu, M.X.,Deng, X.M.,Feng, J.D.,Li, Ning,Wu, Changxin Asian Australasian Association of Animal Productio 2004 Animal Bioscience Vol.17 No.11

        Small Tail Han Sheep has significant characteristics of high prolificacy and non-seasonal ovulatory activity and is an excellent local sheep breed in P. R. China. Recently a novel member of the transforming growth factor $\beta$ (TGF$\beta$) superfamily termed bone morphogenetic protein 15 (BMP15) was shown to be specifically expressed in oocytes and to be essential for female fertility. Therefore, BMP15 is a candidate gene for reproductive performance of Small Tail Han Sheep. The whole genomic nucleotide sequence of BMP15 gene in Small Tail Han Sheep was searched for polymorphisms by PCR-SSCP and direct sequencing, and only one polymorphism was found. The polymorphism was a result of a 3 base pair deletion, which eliminated a single Leu codon (CTT). The allelic frequencies for A (without deletion) and B (with a codon deletion) are 0.73 and 0.27 respectively. The effects of BMP15 genotype on litter size were evaluated using the least squares model. This indicated that there was a significant association between litter size of Small Tail Han Sheep and a deletion in BMP15 gene (p=0.02<0.05). Small Tail Han Sheep ewes with AA and AB genotype produce on average 0.5 and 0.3 more lambs per litter than those ewes with BB genotype.

      • KCI등재

        Age Hardening Characteristics of Cu-Ag-Zr Alloy

        S. G. Jia,X. M. Ning,M. S. Zheng,G. S. Zhou,P. Liu 대한금속·재료학회 2009 METALS AND MATERIALS International Vol.15 No.4

        Cu-Ag-Zr alloy is a newly developed copper alloy material which has an excellent combination of high mechanical strength and high electrical conductivity. By means of vacuum induction melting, Cu-Ag-Zr alloy was produced. The effects of aging processes on the microhardness and electrical conductivity characteristics of Cu-Ag-Zr alloy were studied. After aging at 450 °C for 4h, the alloy showed an excellent combination of microhardness and electrical conductivity: the microhardness and electrical conductivity reach 126 HV and 84%IACS, respectively. The precipitates responsible for the age-hardening effect are the fine and dispersed Cu5Zr, which has a face center cubic structure. Cu5Zr precipitates are fully coherent with the Cu matrix and give the Cu- Ag-Zr alloy higher microhardness and higher electrical conductivity. Cu-Ag-Zr alloy is a newly developed copper alloy material which has an excellent combination of high mechanical strength and high electrical conductivity. By means of vacuum induction melting, Cu-Ag-Zr alloy was produced. The effects of aging processes on the microhardness and electrical conductivity characteristics of Cu-Ag-Zr alloy were studied. After aging at 450 °C for 4h, the alloy showed an excellent combination of microhardness and electrical conductivity: the microhardness and electrical conductivity reach 126 HV and 84%IACS, respectively. The precipitates responsible for the age-hardening effect are the fine and dispersed Cu5Zr, which has a face center cubic structure. Cu5Zr precipitates are fully coherent with the Cu matrix and give the Cu- Ag-Zr alloy higher microhardness and higher electrical conductivity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼