RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Polymer Diffusion from Attractive and Athermal Substrates

        Choi, Jihoon,Clarke, Nigel,Winey, Karen I.,Composto, Russell J. American Chemical Society 2017 Macromolecules Vol.50 No.7

        <P>Given the exceedingly high interfacial area-to-volume ratios in polymer nanocomposites and the ability to manipulate the polymer/nanoparticle interfacial interactions, manipulating the chain dynamics at these interfaces has immense potential for impacting macroscopic properties. There, the polymer center-of-mass tracer diffusion coefficient (D) from attractive (hydroxyl terminated) and athermal (phenyl-terminated or polymer-grafted) substrates was measured over a range of temperatures and tracer molecular weights using elastic recoil detection. The tracer polymer diffusion slows significantly relative to the bulk when polymers are in direct contact with an attractive substrate and exhibits a weaker molecular weight dependence, D M M. For polymers without direct contacts on the attractive substrates and for athermal substrates, the diffusion coefficients are similar to the bulk case. The temperature dependence of these diffusion coefficients indicates that the slower diffusion at the interfaces is coupled to differences in polymer conformation and smaller fractional free volumes. These deviations from bulk are more pronounced for higher molecular weights and more attractive interfaces.</P>

      • Dynamics of Precise Ethylene Ionomers Containing Ionic Liquid Functionality

        Choi, U Hyeok,Middleton, L. Robert,Soccio, Michelina,Buitrago, C. Francisco,Aitken, Brian S.,Masser, Hanqing,Wagener, Kenneth B.,Winey, Karen I.,Runt, James American Chemical Society 2015 Macromolecules Vol.48 No.2

        <P>This paper presents the first findings on the molecular dynamics of the remarkable new class of linear and precisely functionalized ethylene copolymers. Specifically, we utilize broadband dielectric relaxation spectroscopy to investigate the molecular dynamics of linear polyethylene (PE)-based ionomers containing 1-methylimidazolium bromide (<B>ImBr</B>) pendants on exactly every 9th, 15th, or 21st carbon atom, along with one pseudorandom analogue. We also employed FTIR spectroscopy to provide insight into local ionic interactions and the nature of the ordering of the ethylene spacers between pendants. Prior X-ray scattering experiments revealed that the polar ionic groups in these ionomers self-assemble into microphase-separated aggregates dispersed throughout the nonpolar PE matrix. We focus primarily on the dynamics of the segmental relaxations, which are significantly slowed down compared to linear PE due to ion aggregation. Relaxation times depend on composition, the presence of crystallinity, and microphase-separated morphologies. Segmental relaxation strengths are much lower than predicted by the Onsager theory for mobile isolated dipoles but much higher than linear PE, demonstrating that at least some <B>ImBr</B> pendants participate in the segmental process. Analysis of the relaxation strengths using the Kirkwood <I>g</I> correlation factor demonstrates that ca. 10–40% of the <B>ImBr</B> ion dipoles (depending on copolymer composition and temperature) participate in the segmental motions of the precise ionomers under study, with the remainder immobilized or having net antiparallel arrangements in ion aggregates.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/mamobx/2015/mamobx.2015.48.issue-2/ma502168e/production/images/medium/ma-2014-02168e_0011.gif'></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼